Line 1: |
Line 1: |
− | A '''truth table''' is a tabular array that illustrates the computation of a [[boolean function]], that is, a function of the form ''f'' : '''B'''<sup>''k''</sup> → '''B''', where ''k'' is a non-negative integer and '''B''' is the [[boolean domain]] {0, 1}. | + | A '''truth table''' is a tabular array that illustrates the computation of a [[boolean function]], that is, a function of the form <math>f : \mathbb{B}^k \to \mathbb{B},</math> where <math>k\!</math> is a non-negative integer and <math>\mathbb{B}</math> is the [[boolean domain]] <math>\{ 0, 1 \}.\!</math> |
| | | |
| ==Logical negation== | | ==Logical negation== |
Line 7: |
Line 7: |
| The truth table of '''NOT p''' (also written as '''~p''' or '''¬p''') is as follows: | | The truth table of '''NOT p''' (also written as '''~p''' or '''¬p''') is as follows: |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:40%" | + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:40%" |
| |+ '''Logical Negation''' | | |+ '''Logical Negation''' |
− | |- style="background:paleturquoise" | + | |- style="background:#e6e6ff" |
| ! style="width:20%" | p | | ! style="width:20%" | p |
| ! style="width:20%" | ¬p | | ! style="width:20%" | ¬p |
Line 17: |
Line 19: |
| | T || F | | | T || F |
| |} | | |} |
| + | |
| <br> | | <br> |
| | | |
| The logical negation of a proposition '''p''' is notated in different ways in various contexts of discussion and fields of application. Among these variants are the following: | | The logical negation of a proposition '''p''' is notated in different ways in various contexts of discussion and fields of application. Among these variants are the following: |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; width:40%" | + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; width:40%" |
| |+ '''Variant Notations''' | | |+ '''Variant Notations''' |
− | |- style="background:paleturquoise" | + | |- style="background:#e6e6ff" |
| ! style="text-align:center" | Notation | | ! style="text-align:center" | Notation |
| ! Vocalization | | ! Vocalization |
Line 36: |
Line 41: |
| | bang ''p'' | | | bang ''p'' |
| |} | | |} |
| + | |
| <br> | | <br> |
| | | |
Line 44: |
Line 50: |
| The truth table of '''p AND q''' (also written as '''p ∧ q''', '''p & q''', or '''p<math>\cdot</math>q''') is as follows: | | The truth table of '''p AND q''' (also written as '''p ∧ q''', '''p & q''', or '''p<math>\cdot</math>q''') is as follows: |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:45%" | + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%" |
| |+ '''Logical Conjunction''' | | |+ '''Logical Conjunction''' |
− | |- style="background:paleturquoise" | + | |- style="background:#e6e6ff" |
| ! style="width:15%" | p | | ! style="width:15%" | p |
| ! style="width:15%" | q | | ! style="width:15%" | q |
Line 59: |
Line 67: |
| | T || T || T | | | T || T || T |
| |} | | |} |
| + | |
| <br> | | <br> |
| | | |
Line 67: |
Line 76: |
| The truth table of '''p OR q''' (also written as '''p ∨ q''') is as follows: | | The truth table of '''p OR q''' (also written as '''p ∨ q''') is as follows: |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:45%" | + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%" |
| |+ '''Logical Disjunction''' | | |+ '''Logical Disjunction''' |
− | |- style="background:paleturquoise" | + | |- style="background:#e6e6ff" |
| ! style="width:15%" | p | | ! style="width:15%" | p |
| ! style="width:15%" | q | | ! style="width:15%" | q |
Line 82: |
Line 93: |
| | T || T || T | | | T || T || T |
| |} | | |} |
| + | |
| <br> | | <br> |
| | | |
Line 90: |
Line 102: |
| The truth table of '''p EQ q''' (also written as '''p = q''', '''p ↔ q''', or '''p ≡ q''') is as follows: | | The truth table of '''p EQ q''' (also written as '''p = q''', '''p ↔ q''', or '''p ≡ q''') is as follows: |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:45%" | + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%" |
| |+ '''Logical Equality''' | | |+ '''Logical Equality''' |
− | |- style="background:paleturquoise" | + | |- style="background:#e6e6ff" |
| ! style="width:15%" | p | | ! style="width:15%" | p |
| ! style="width:15%" | q | | ! style="width:15%" | q |
Line 105: |
Line 119: |
| | T || T || T | | | T || T || T |
| |} | | |} |
| + | |
| <br> | | <br> |
| | | |
Line 113: |
Line 128: |
| The truth table of '''p XOR q''' (also written as '''p + q''', '''p ⊕ q''', or '''p ≠ q''') is as follows: | | The truth table of '''p XOR q''' (also written as '''p + q''', '''p ⊕ q''', or '''p ≠ q''') is as follows: |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:45%" | + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%" |
| |+ '''Exclusive Disjunction''' | | |+ '''Exclusive Disjunction''' |
− | |- style="background:paleturquoise" | + | |- style="background:#e6e6ff" |
| ! style="width:15%" | p | | ! style="width:15%" | p |
| ! style="width:15%" | q | | ! style="width:15%" | q |
Line 128: |
Line 145: |
| | T || T || F | | | T || T || F |
| |} | | |} |
| + | |
| <br> | | <br> |
| | | |
Line 146: |
Line 164: |
| The truth table associated with the material conditional '''if p then q''' (symbolized as '''p → q''') and the logical implication '''p implies q''' (symbolized as '''p ⇒ q''') is as follows: | | The truth table associated with the material conditional '''if p then q''' (symbolized as '''p → q''') and the logical implication '''p implies q''' (symbolized as '''p ⇒ q''') is as follows: |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:45%" | + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%" |
| |+ '''Logical Implication''' | | |+ '''Logical Implication''' |
− | |- style="background:paleturquoise" | + | |- style="background:#e6e6ff" |
| ! style="width:15%" | p | | ! style="width:15%" | p |
| ! style="width:15%" | q | | ! style="width:15%" | q |
Line 161: |
Line 181: |
| | T || T || T | | | T || T || T |
| |} | | |} |
| + | |
| <br> | | <br> |
| | | |
Line 169: |
Line 190: |
| The truth table of '''p NAND q''' (also written as '''p | q''' or '''p ↑ q''') is as follows: | | The truth table of '''p NAND q''' (also written as '''p | q''' or '''p ↑ q''') is as follows: |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:45%" | + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%" |
| |+ '''Logical NAND''' | | |+ '''Logical NAND''' |
− | |- style="background:paleturquoise" | + | |- style="background:#e6e6ff" |
| ! style="width:15%" | p | | ! style="width:15%" | p |
| ! style="width:15%" | q | | ! style="width:15%" | q |
Line 184: |
Line 207: |
| | T || T || F | | | T || T || F |
| |} | | |} |
| + | |
| <br> | | <br> |
| | | |
Line 192: |
Line 216: |
| The truth table of '''p NNOR q''' (also written as '''p ⊥ q''' or '''p ↓ q''') is as follows: | | The truth table of '''p NNOR q''' (also written as '''p ⊥ q''' or '''p ↓ q''') is as follows: |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:45%" | + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%" |
| |+ '''Logical NNOR''' | | |+ '''Logical NNOR''' |
− | |- style="background:paleturquoise" | + | |- style="background:#e6e6ff" |
| ! style="width:15%" | p | | ! style="width:15%" | p |
| ! style="width:15%" | q | | ! style="width:15%" | q |
Line 207: |
Line 233: |
| | T || T || F | | | T || T || F |
| |} | | |} |
| + | |
| <br> | | <br> |
| | | |
Line 249: |
Line 276: |
| [[Category:Computer Science]] | | [[Category:Computer Science]] |
| [[Category:Discrete Mathematics]] | | [[Category:Discrete Mathematics]] |
| + | [[Category:Formal Languages]] |
| + | [[Category:Formal Sciences]] |
| + | [[Category:Formal Systems]] |
| + | [[Category:Linguistics]] |
| [[Category:Logic]] | | [[Category:Logic]] |
| [[Category:Mathematics]] | | [[Category:Mathematics]] |
| + | [[Category:Philosophy]] |
| + | [[Category:Semiotics]] |
| + | |
| + | <sharethis /> |