Changes

Line 192: Line 192:  
: A ''literal'' is one of the <math>2k\!</math> propositions <math>x_1, \ldots, x_k, (x_1), \ldots, (x_k),</math> in other words, either a ''posited'' basic proposition <math>x_j\!</math> or a ''negated'' basic proposition <math>(x_j),\!</math> for some <math>j = 1 ~\text{to}~ k.</math>
 
: A ''literal'' is one of the <math>2k\!</math> propositions <math>x_1, \ldots, x_k, (x_1), \ldots, (x_k),</math> in other words, either a ''posited'' basic proposition <math>x_j\!</math> or a ''negated'' basic proposition <math>(x_j),\!</math> for some <math>j = 1 ~\text{to}~ k.</math>
   −
* In mathematics generally, the '''[[fiber (mathematics)|fiber]]''' of a point ''y'' under a function ''f''&nbsp;:&nbsp;''X''&nbsp;→&nbsp;''Y'' is defined as the inverse image <math>f^{-1}(y)</math>.
+
; Fiber
 +
: In mathematics generally, the ''[[fiber (mathematics)|fiber]]'' of a point <math>y \in Y</math> under a function <math>f : X \to Y</math> is defined as the inverse image <math>f^{-1}(y) \subseteq X.</math>
    
* In the case of a boolean function ''f''&nbsp;:&nbsp;'''B'''<sup>''k''</sup>&nbsp;→&nbsp;'''B''', there are just two fibers:
 
* In the case of a boolean function ''f''&nbsp;:&nbsp;'''B'''<sup>''k''</sup>&nbsp;→&nbsp;'''B''', there are just two fibers:
Line 198: Line 199:  
** The fiber of 1 under ''f'', defined as <math>f^{-1}(1)</math>, is the set of points where ''f'' is 1.
 
** The fiber of 1 under ''f'', defined as <math>f^{-1}(1)</math>, is the set of points where ''f'' is 1.
   −
* When 1 is interpreted as the logical value ''true'', then <math>f^{-1}(1)</math> is called the '''fiber&nbsp;of&nbsp;truth''' in the proposition ''f''.  Frequent mention of this fiber makes it useful to have a shorter way of referring to it.  This leads to the definition of the notation <math>[|f|] = f^{-1}(1)\!</math> for the fiber of truth in the proposition ''f''.
+
* When 1 is interpreted as the logical value ''true'', then <math>f^{-1}(1)\!</math> is called the '''fiber&nbsp;of&nbsp;truth''' in the proposition ''f''.  Frequent mention of this fiber makes it useful to have a shorter way of referring to it.  This leads to the definition of the notation <math>[|f|] = f^{-1}(1)\!</math> for the fiber of truth in the proposition ''f''.
    
* A '''singular boolean function''' ''s''&nbsp;:&nbsp;'''B'''<sup>''k''</sup>&nbsp;→&nbsp;'''B''' is a boolean function whose fiber of 1 is a single point of '''B'''<sup>''k''</sup>.
 
* A '''singular boolean function''' ''s''&nbsp;:&nbsp;'''B'''<sup>''k''</sup>&nbsp;→&nbsp;'''B''' is a boolean function whose fiber of 1 is a single point of '''B'''<sup>''k''</sup>.
12,080

edits