Line 174: |
Line 174: |
| ==Glossary of basic terms== | | ==Glossary of basic terms== |
| | | |
− | * A '''[[boolean domain]]''' <math>\mathbb{B}</math> is a generic 2-element [[set]], for example, <math>\mathbb{B} = \{ 0, 1 \},</math> whose elements are interpreted as [[logical value]]s, usually but not invariably with <math>0 = \operatorname{false}</math> and <math>1 = \operatorname{true}.</math>
| + | ; Boolean domain |
| + | : A ''[[boolean domain]]'' <math>\mathbb{B}</math> is a generic 2-element set, for example, <math>\mathbb{B} = \{ 0, 1 \},</math> whose elements are interpreted as logical values, usually but not invariably with <math>0 = \operatorname{false}</math> and <math>1 = \operatorname{true}.</math> |
| | | |
− | * A '''[[boolean variable]]''' <math>x\!</math> is a [[variable]] that takes its value from a boolean domain, as <math>x \in \mathbb{B}.</math>
| + | ; Boolean variable |
| + | : A ''boolean variable'' <math>x\!</math> is a variable that takes its value from a boolean domain, as <math>x \in \mathbb{B}.</math> |
| | | |
− | * In situations where [[boolean value]]s are interpreted as [[logical value]]s, a [[boolean-valued function]] ''f'' : ''X'' → '''B''' or a [[boolean function]] ''g'' : '''B'''<sup>''k''</sup> → '''B''' is frequently called a '''[[proposition]]'''.
| + | ; Proposition |
| + | : In situations where boolean values are interpreted as logical values, a [[boolean-valued function]] <math>f : X \to \mathbb{B}</math> or a [[boolean function]] <math>g : \mathbb{B}^k \to \mathbb{B}</math> is frequently called a ''[[proposition]]''. |
| | | |
− | * Given a sequence of ''k'' boolean variables, ''x''<sub>1</sub>, …, ''x''<sub>''k''</sub>, each variable ''x''<sub>''j''</sub> may be treated either as a [[basis element]] of the space '''B'''<sup>''k''</sup> or as a [[coordinate projection]] ''x''<sub>''j''</sub> : '''B'''<sup>''k''</sup> → '''B'''.
| + | ; Basis element, Coordinate projection |
| + | : Given a sequence of <math>k\!</math> boolean variables, <math>x_1, \ldots, x_k,</math> each variable <math>x_j\!</math> may be treated either as a ''basis element'' of the space <math>\mathbb{B}^k</math> or as a ''coordinate projection'' <math>x_j : \mathbb{B}^k \to \mathbb{B}.</math> |
| | | |
− | * This means that the ''k'' objects ''x''<sub>''j''</sub> for ''j'' = 1 to ''k'' are just so many boolean functions ''x''<sub>''j''</sub> : '''B'''<sup>''k''</sup> → '''B''' , subject to logical interpretation as a set of ''basic propositions'' that generate the complete set of <math>2^{2^k}</math> propositions over '''B'''<sup>''k''</sup>.
| + | ; Basic proposition |
| + | : This means that the set of objects <math>\{ x_j : 1 \le j \le k \}</math> is a set of boolean functions <math>\{ x_j : \mathbb{B}^k \to \mathbb{B} \}</math> subject to logical interpretation as a set of ''basic propositions'' that collectively generate the complete set of <math>2^{2^k}</math> propositions over <math>\mathbb{B}^k.</math> |
| | | |
| * A '''literal''' is one of the 2''k'' propositions ''x''<sub>1</sub>, …, ''x''<sub>''k''</sub>, (''x''<sub>1</sub>), …, (''x''<sub>''k''</sub>), in other words, either a ''posited'' basic proposition ''x''<sub>''j''</sub> or a ''negated'' basic proposition (''x''<sub>''j''</sub>), for some ''j'' = 1 to ''k''. | | * A '''literal''' is one of the 2''k'' propositions ''x''<sub>1</sub>, …, ''x''<sub>''k''</sub>, (''x''<sub>1</sub>), …, (''x''<sub>''k''</sub>), in other words, either a ''posited'' basic proposition ''x''<sub>''j''</sub> or a ''negated'' basic proposition (''x''<sub>''j''</sub>), for some ''j'' = 1 to ''k''. |