Changes

Line 5,489: Line 5,489:  
|}
 
|}
   −
It is very instructive to examine the matrix representation of <math>\mathit{l}^\mathrm{w}\!</math> at this point, not the least because it dispels the mystery of the name ''involution''.
+
It is very instructive to examine the matrix representation of <math>\mathit{l}^\mathrm{w}\!</math> at this point, not the least because it effectively dispels the mystery of the name ''involution''. First, let us make the following observation.  To say that <math>\mathrm{J}\!</math> is a lover of every woman is to say that <math>\mathrm{J}\!</math> loves <math>\mathrm{K}\!</math> if <math>\mathrm{K}\!</math> is a woman.  This can be rendered in symbols as follows:
 
  −
{| align="center" cellspacing="6" width="90%"
  −
| height="60" | <math>\operatorname{Mat}(\mathit{l}^\mathrm{w}) ~=~ \operatorname{Mat}(\mathit{l})^{\operatorname{Mat}(\mathrm{w})} ~=~ \mathfrak{L}^\mathfrak{W}</math>
  −
|-
  −
| height="60" | <math>(\mathfrak{L}^\mathfrak{W})_{a} ~=~ \prod_{x \in X} \mathfrak{L}_{ax}^{\mathfrak{W}_{x}}</math>
  −
|}
  −
 
  −
To say that <math>\mathrm{J}\!</math> is a lover of every woman is to say that <math>\mathrm{J}\!</math> loves <math>\mathrm{K}\!</math> if <math>\mathrm{K}\!</math> is a woman.  This can be rendered in symbols as follows:
      
{| align="center" cellspacing="6" width="90%"
 
{| align="center" cellspacing="6" width="90%"
Line 5,528: Line 5,520:  
\end{bmatrix}
 
\end{bmatrix}
 
</math>
 
</math>
 +
|}
 +
 +
{| align="center" cellspacing="6" width="90%"
 +
| height="60" | <math>\operatorname{Mat}(\mathit{l}^\mathrm{w}) ~=~ \operatorname{Mat}(\mathit{l})^{\operatorname{Mat}(\mathrm{w})} ~=~ \mathfrak{L}^\mathfrak{W}</math>
 +
|-
 +
| height="60" | <math>(\mathfrak{L}^\mathfrak{W})_{a} ~=~ \prod_{x \in X} \mathfrak{L}_{ax}^{\mathfrak{W}_{x}}</math>
 
|}
 
|}
  
12,080

edits