Line 5,413: |
Line 5,413: |
| | | |
| {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |
− | | height="40" | <math>X\!</math> is a set distinguished as the ''universe of discourse''. | + | | height="40" | <math>X\!</math> is a set singled out in a particular discussion as the ''universe of discourse''. |
| |- | | |- |
| | height="40" | <math>W \subseteq X</math> is the 1-adic relation, or set, whose elements fall under the absolute term <math>\mathrm{w} = \text{woman}.\!</math> The elements of <math>W\!</math> are sometimes referred to as the ''denotation'' or the set-theoretic ''extension'' of the term <math>\mathrm{w}.\!</math> | | | height="40" | <math>W \subseteq X</math> is the 1-adic relation, or set, whose elements fall under the absolute term <math>\mathrm{w} = \text{woman}.\!</math> The elements of <math>W\!</math> are sometimes referred to as the ''denotation'' or the set-theoretic ''extension'' of the term <math>\mathrm{w}.\!</math> |
Line 5,489: |
Line 5,489: |
| |} | | |} |
| | | |
− | It is very instructive to examine the matrix representation of <math>\mathit{l}^\mathrm{w}\!</math> at this point, not the least because it helps to dispel the mystery behind the name ''involution''. | + | It is very instructive to examine the matrix representation of <math>\mathit{l}^\mathrm{w}\!</math> at this point, not the least because it dispels the mystery of the name ''involution''. |
| | | |
| {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |
Line 5,495: |
Line 5,495: |
| |- | | |- |
| | height="60" | <math>(\mathfrak{L}^\mathfrak{W})_{a} ~=~ \prod_{x \in X} \mathfrak{L}_{ax}^{\mathfrak{W}_{x}}</math> | | | height="60" | <math>(\mathfrak{L}^\mathfrak{W})_{a} ~=~ \prod_{x \in X} \mathfrak{L}_{ax}^{\mathfrak{W}_{x}}</math> |
| + | |} |
| + | |
| + | To say that <math>\mathrm{J}\!</math> is a lover of every woman is to say that <math>\mathrm{J}\!</math> loves <math>\mathrm{K}\!</math> if <math>\mathrm{K}\!</math> is a woman. This can be rendered in symbols as follows: |
| + | |
| + | {| align="center" cellspacing="6" width="90%" |
| + | | <math>\mathrm{J} ~\text{loves}~ \mathrm{K} ~\Leftarrow~ \mathrm{K} ~\text{is a woman}</math> |
| + | |} |
| + | |
| + | Interpreting the formula <math>\mathit{l}^\mathrm{w}\!</math> as <math>\mathrm{J} ~\text{loves}~ \mathrm{K} ~\Leftarrow~ \mathrm{K} ~\text{is a woman}</math> highlights the form of the converse implication inherent in it, and this in turn reveals the analogy between implication and involution that accounts for the aptness of the latter name. |
| + | |
| + | {| align="center" cellspacing="6" width="90%" |
| + | | |
| + | <math> |
| + | \begin{bmatrix} |
| + | 0^0 & = & 1 |
| + | \\ |
| + | 0^1 & = & 0 |
| + | \\ |
| + | 1^0 & = & 1 |
| + | \\ |
| + | 1^1 & = & 1 |
| + | \end{bmatrix} |
| + | \qquad\qquad\qquad |
| + | \begin{bmatrix} |
| + | 0\!\Leftarrow\!0 & = & 1 |
| + | \\ |
| + | 0\!\Leftarrow\!1 & = & 0 |
| + | \\ |
| + | 1\!\Leftarrow\!0 & = & 1 |
| + | \\ |
| + | 1\!\Leftarrow\!1 & = & 1 |
| + | \end{bmatrix} |
| + | </math> |
| |} | | |} |
| | | |