Changes

Line 56: Line 56:     
{| align="center" cellspacing="6" width="90%"
 
{| align="center" cellspacing="6" width="90%"
| height="40" | <math>\mathfrak{W} = \operatorname{Mat}(W) = \operatorname{Mat}(\mathrm{w})</math> is the matrix representaion of the set <math>W\!</math> and the term <math>\mathrm{w}.\!</math>
+
| height="40" | <math>\mathfrak{W} = \operatorname{Mat}(W) = \operatorname{Mat}(\mathrm{w}) = (\mathfrak{W}_{xy})</math> is the 1-dimensional matrix representation of the set <math>W\!</math> and the term <math>\mathrm{w}.\!</math>
 
|-
 
|-
| height="40" | <math>\mathfrak{L} = \operatorname{Mat}(L) = \operatorname{Mat}(\mathit{l})</math> is the matrix representaion of the relation <math>L\!</math> and the relative term <math>\mathit{l}.\!</math>
+
| height="40" | <math>\mathfrak{L} = \operatorname{Mat}(L) = \operatorname{Mat}(\mathit{l}) = (\mathfrak{L}_{xy})</math> is the 2-dimensional matrix representation of the relation <math>L\!</math> and the relative term <math>\mathit{l}.\!</math>
 
|-
 
|-
| height="40" | <math>\mathfrak{S} = \operatorname{Mat}(S) = \operatorname{Mat}(\mathit{s})</math> is the matrix representaion of the relation <math>S\!</math> and the relative term <math>\mathit{s}.\!</math>
+
| height="40" | <math>\mathfrak{S} = \operatorname{Mat}(S) = \operatorname{Mat}(\mathit{s}) = (\mathfrak{S}_{xy})</math> is the 2-dimensional matrix representaion of the relation <math>S\!</math> and the relative term <math>\mathit{s}.\!</math>
 
|}
 
|}
  
12,080

edits