Line 5,445: |
Line 5,445: |
| Proceeding as before, assume the following definitions: | | Proceeding as before, assume the following definitions: |
| | | |
− | {| align="center" cellspacing="10" width="90%" | + | {| align="center" cellspacing="6" width="90%" |
− | | <math>X\!</math> is the universe of discourse, | + | | height="40" | <math>X\!</math> is the universe of discourse, |
| |- | | |- |
− | | <math>W \subseteq X</math> is the denotation of the absolute term <math>\mathrm{w} = \text{woman},\!</math> | + | | height="40" | <math>W \subseteq X</math> is the denotation of the absolute term <math>\mathrm{w} = \text{woman},\!</math> |
| |- | | |- |
− | | <math>L \subseteq X \times X\!</math> is the 2-adic relation associated with the relative term <math>\mathit{l} = \text{lover of}\,\underline{~~~~},</math> | + | | height="40" | <math>L \subseteq X \times X\!</math> is the 2-adic relation associated with the relative term <math>\mathit{l} = \text{lover of}\,\underline{~~~~},</math> |
| |- | | |- |
− | | <math>S \subseteq X \times X\!</math> is the 2-adic relation associated with the relative term <math>\mathit{s} = \text{servant of}\,\underline{~~~~}.</math> | + | | height="40" | <math>S \subseteq X \times X\!</math> is the 2-adic relation associated with the relative term <math>\mathit{s} = \text{servant of}\,\underline{~~~~}.</math> |
| |} | | |} |
| | | |
− | {| align="center" cellspacing="10" width="90%" | + | Then we have the following results: |
− | | <math>\mathit{s}^{(\mathit{l}\mathrm{w})} ~=~ \bigcap_{x \in LW} \operatorname{proj}_1 (S \star x)</math> | + | |
| + | {| align="center" cellspacing="6" width="90%" |
| + | | height="40" | <math>\mathit{s}^{(\mathit{l}\mathrm{w})} ~=~ \bigcap_{x \in LW} \operatorname{proj}_1 (S \star x)</math> |
| |} | | |} |
| | | |