Changes

Line 5,375: Line 5,375:  
Given a universe of discourse <math>X,\!</math> suppose that <math>L \subseteq X \times X\!</math> is the 2-adic relation associated with the relative term <math>\mathit{l} = \text{lover of}\,\underline{~~~~}.</math>
 
Given a universe of discourse <math>X,\!</math> suppose that <math>L \subseteq X \times X\!</math> is the 2-adic relation associated with the relative term <math>\mathit{l} = \text{lover of}\,\underline{~~~~}.</math>
   −
Recall the definition of the local flags for such a relation:
+
Recall the definition of the ''local flags'' for such a relation:
    
{| align="center" cellspacing="6" width="90%"
 
{| align="center" cellspacing="6" width="90%"
Line 5,382: Line 5,382:  
L_{u \,\text{at}\, 1} & = & \{ (u, x) \in L \}
 
L_{u \,\text{at}\, 1} & = & \{ (u, x) \in L \}
 
\\[6pt]
 
\\[6pt]
& = & \text{the set of ordered pairs in}~ L ~\text{with}~ u ~\text{in the 1st place}.
+
& = & \text{the set of ordered pairs in}~ L ~\text{that have}~ u ~\text{in the 1st place}.
 
\\[9pt]
 
\\[9pt]
 
L_{v \,\text{at}\, 2} & = & \{ (x, v) \in L \}
 
L_{v \,\text{at}\, 2} & = & \{ (x, v) \in L \}
 
\\[6pt]
 
\\[6pt]
& = & \text{the set of ordered pairs in}~ L ~\text{with}~ v ~\text{in the 2nd place}.
+
& = & \text{the set of ordered pairs in}~ L ~\text{that have}~ v ~\text{in the 2nd place}.
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
12,080

edits