Changes

Line 4,232: Line 4,232:  
For a 2-adic relation <math>L \subseteq X \times Y,</math> we have:
 
For a 2-adic relation <math>L \subseteq X \times Y,</math> we have:
   −
{| align="center" cellspacing="6" width="90%"
+
{| align="center" cellspacing="6" style="text-align:center" width="90%"
 
|
 
|
 
<math>\begin{array}{lll}
 
<math>\begin{array}{lll}
Line 4,241: Line 4,241:  
|}
 
|}
   −
As for the definition of relational composition, it is enough to consider the coefficient of the composite on an arbitrary ordered pair like ''i'':''j''.
+
As for the definition of relational composition, it is enough to consider the coefficient of the composite on an arbitrary ordered pair like <math>i:j.\!</math>
   −
: (''P''&nbsp;o&nbsp;''Q'')<sub>''ij''</sub> = &sum;<sub>''k''</sub>&nbsp;(''P''<sub>''ik''</sub>&nbsp;''Q''<sub>''kj''</sub>).
+
{| align="center" cellspacing="6" style="text-align:center" width="90%"
 +
| <math>(P \circ Q)_{ij} ~=~ \sum_k P_{ik} Q_{kj}</math>
 +
|}
    
So let us begin.
 
So let us begin.
12,080

edits