Changes

Line 207: Line 207:  
Suppose that <math>u\!</math> is the logical disjunction of these four terms:
 
Suppose that <math>u\!</math> is the logical disjunction of these four terms:
   −
: ''u'' = ((''s''<sub>1</sub>)(''s''<sub>2</sub>)(''s''<sub>3</sub>)(''s''<sub>4</sub>)).
+
{| align="center" cellspacing="6" width="90%"
 +
|
 +
<math>\begin{array}{lll}
 +
u & = & ((s_1)(s_2)(s_3)(s_4))
 +
\end{array}</math>
 +
|}
    
Figure 2 depicts the situation that we have before us.
 
Figure 2 depicts the situation that we have before us.
   −
<font face="courier new"><pre>
+
<br><center><pre>
 
o---------------------------------------------------------------------o
 
o---------------------------------------------------------------------o
 
|                                                                    |
 
|                                                                    |
Line 238: Line 243:  
o---------------------------------------------------------------------o
 
o---------------------------------------------------------------------o
 
Figure 2.  Disjunctive Term u, Taken as Subject
 
Figure 2.  Disjunctive Term u, Taken as Subject
</pre></font>
+
</pre></center><br>
    
In a similar but dual fashion to the preceding consideration, there is a gap between the the logical disjunction ''u'', in lattice terminology, the ''least upper bound'' (''lub'') of the disjoined terms, ''u'' = ''lub''{''s''<sub>''j''</sub>&nbsp;:&nbsp;''j''&nbsp;=&nbsp;1&nbsp;to&nbsp;4}, and what we might regard as the "natural disjunction" or the "natural lub", namely, ''v''&nbsp;=&nbsp;''cloven-hoofed''.
 
In a similar but dual fashion to the preceding consideration, there is a gap between the the logical disjunction ''u'', in lattice terminology, the ''least upper bound'' (''lub'') of the disjoined terms, ''u'' = ''lub''{''s''<sub>''j''</sub>&nbsp;:&nbsp;''j''&nbsp;=&nbsp;1&nbsp;to&nbsp;4}, and what we might regard as the "natural disjunction" or the "natural lub", namely, ''v''&nbsp;=&nbsp;''cloven-hoofed''.
12,080

edits