Changes

Line 2,573: Line 2,573:  
====Output Conditions for Tape Input "0"====
 
====Output Conditions for Tape Input "0"====
   −
Let <math>p_0\!</math> be the proposition that we get by conjoining the proposition that describes the initial conditions for tape input "0" with the proposition that describes the truncated turing machine <math>\operatorname{Stunt}(2).</math>  As it turns out, <math>p_0\!</math> has a single satisfying interpretation, and this is represented as a singular proposition in terms of its positive logical features in the following display:
+
Let <math>p_0\!</math> be the proposition that we get by conjoining the proposition that describes the initial conditions for tape input "0" with the proposition that describes the truncated turing machine <math>\operatorname{Stunt}(2).</math>  As it turns out, <math>p_0\!</math> has a single satisfying interpretation.  This interpretation is expressible in the form of a singular proposition, which can in turn be indicated by its positive logical features, as shown in the following display:
    
<br>
 
<br>
Line 2,603: Line 2,603:  
The Output Conditions for Tape Input "0" can be read as follows:
 
The Output Conditions for Tape Input "0" can be read as follows:
   −
  At the time p_0, M is in the state q_0, and
+
{| align="center" cellpadding=8" width="90%"
  At the time p_0, H is reading cell r_1, and
+
|
  At the time p_0, cell r_0 contains "#", and
+
<p>At the time <math>p_0,\!</math> machine <math>\operatorname{M}</math> is in the state <math>q_0,\!</math> and</p>
  At the time p_0, cell r_1 contains "0", and
+
<p>At the time <math>p_0,\!</math> scanner <math>\operatorname{H}</math> is reading cell <math>r_1,\!</math> and</p>
  At the time p_0, cell r_2 contains "#", and
+
<p>At the time <math>p_0,\!</math> cell <math>r_0\!</math> contains the symbol <math>\texttt{\#},</math> and</p>
 
+
<p>At the time <math>p_0,\!</math> cell <math>r_1\!</math> contains the symbol <math>\texttt{0},</math> and</p>
  At the time p_1, M is in the state q_0, and
+
<p>At the time <math>p_0,\!</math> cell <math>r_2\!</math> contains the symbol <math>\texttt{\#},</math> and</p>
  At the time p_1, H is reading cell r_2, and
+
|-
  At the time p_1, cell r_0 contains "#", and
+
|
  At the time p_1, cell r_1 contains "0", and
+
<p>At the time <math>p_1,\!</math> machine <math>\operatorname{M}</math> is in the state <math>q_0,\!</math> and</p>
  At the time p_1, cell r_2 contains "#", and
+
<p>At the time <math>p_1,\!</math> scanner <math>\operatorname{H}</math> is reading cell <math>r_2,\!</math> and</p>
 
+
<p>At the time <math>p_1,\!</math> cell <math>r_0\!</math> contains the symbol <math>\texttt{\#},</math> and</p>
  At the time p_2, M is in the state q_#, and
+
<p>At the time <math>p_1,\!</math> cell <math>r_1\!</math> contains the symbol <math>\texttt{0},</math> and</p>
  At the time p_2, H is reading cell r_1, and
+
<p>At the time <math>p_1,\!</math> cell <math>r_2\!</math> contains the symbol <math>\texttt{\#},</math> and</p>
  At the time p_2, cell r_0 contains "#", and
+
|-
  At the time p_2, cell r_1 contains "0", and
+
|
  At the time p_2, cell r_2 contains "#".
+
<p>At the time <math>p_2,\!</math> machine <math>\operatorname{M}</math> is in the state <math>q_\#,\!</math> and</p>
 +
<p>At the time <math>p_2,\!</math> scanner <math>\operatorname{H}</math> is reading cell <math>r_1,\!</math> and</p>
 +
<p>At the time <math>p_2,\!</math> cell <math>r_0\!</math> contains the symbol <math>\texttt{\#},</math> and</p>
 +
<p>At the time <math>p_2,\!</math> cell <math>r_1\!</math> contains the symbol <math>\texttt{0},</math> and</p>
 +
<p>At the time <math>p_2,\!</math> cell <math>r_2\!</math> contains the symbol <math>\texttt{\#}.</math></p>
 +
|}
    
The output of <math>\operatorname{Stunt}(2)</math> being the symbol that rests under the tape head <math>\operatorname{H}</math> if and when the machine <math>\operatorname{M}</math> reaches one of its resting states, we get the result that <math>\operatorname{Parity}(0) = 0.</math>
 
The output of <math>\operatorname{Stunt}(2)</math> being the symbol that rests under the tape head <math>\operatorname{H}</math> if and when the machine <math>\operatorname{M}</math> reaches one of its resting states, we get the result that <math>\operatorname{Parity}(0) = 0.</math>
12,080

edits