Let us now consider the family of <math>4^\text{th}\!</math> gear curves through the extended space <math>\operatorname{E}^4 X = \langle x, dx, d^2 x, d^3 x, d^4 x \rangle.</math> These are the trajectories that are generated subject to the law <math>d^4 x = 1,\!</math> where it is understood in making such a statement that all higher order differences are equal to <math>0.\!</math> | Let us now consider the family of <math>4^\text{th}\!</math> gear curves through the extended space <math>\operatorname{E}^4 X = \langle x, dx, d^2 x, d^3 x, d^4 x \rangle.</math> These are the trajectories that are generated subject to the law <math>d^4 x = 1,\!</math> where it is understood in making such a statement that all higher order differences are equal to <math>0.\!</math> |