Changes

Line 1,589: Line 1,589:  
In the following definitions, let <math>L \subseteq O \times S \times I,</math> let <math>S = I,\!</math> and let <math>x, y \in S.\!</math>
 
In the following definitions, let <math>L \subseteq O \times S \times I,</math> let <math>S = I,\!</math> and let <math>x, y \in S.\!</math>
   −
<pre>
+
Recall the definition of <math>\operatorname{Con} (L),</math> the connotative component of a sign relation <math>L,\!</math> in the following form:
Recall the definition of Con(R), the connotative component of R, in the following form:
+
 
 +
{| align="center" cellpadding="8" width="90%"
 +
| <math>\operatorname{Con} (L) ~=~ L_{SI} ~=~ \{ (s, i) \in S \times I ~:~ (o, s, i) \in L ~\text{for some}~ o \in O \}.</math>
 +
|}
   −
Con(R)  =  RSI  =  {<s, i> C SxI : <o, s, i> C R for some o C O}.
+
Equivalent expressions for this concept are recorded in Definition&nbsp;8.
   −
Equivalent expressions for this concept are recorded in Definition 8.
+
<br>
    +
<pre>
 
Definition 8
 
Definition 8
   Line 1,611: Line 1,615:     
D8e. {<s, i> C SxI : <o, s, i> C R for some o C O}
 
D8e. {<s, i> C SxI : <o, s, i> C R for some o C O}
 +
</pre>
    +
<br>
 +
 +
<pre>
 
The dyadic relation RIS that constitutes the converse of the connotative relation RSI can be defined directly in the following fashion:
 
The dyadic relation RIS that constitutes the converse of the connotative relation RSI can be defined directly in the following fashion:
  
12,080

edits