Line 676: |
Line 676: |
| <br> | | <br> |
| | | |
− | <pre> | + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black" width="90%" |
− | Definition 5 | + | | |
| + | {| align="center" cellpadding="0" cellspacing="0" width="100%" |
| + | |- style="height:40px; text-align:center" |
| + | | width="80%" | |
| + | | width="20%" | <math>\operatorname{Definition~5}</math> |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" cellpadding="0" cellspacing="0" width="100%" |
| + | |- style="height:40px" |
| + | | width="2%" style="border-top:1px solid black" | |
| + | | width="18%" style="border-top:1px solid black" | <math>\text{If}\!</math> |
| + | | width="80%" style="border-top:1px solid black" | <math>Q ~\subseteq~ X</math> |
| + | |- style="height:40px" |
| + | | |
| + | | <math>\text{then}\!</math> |
| + | | <math>\text{the following are identical propositions} ~:~ X \to \underline\mathbb{B}</math> |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" cellpadding="0" cellspacing="0" width="100%" |
| + | |- style="height:40px" |
| + | | width="2%" style="border-top:1px solid black" | |
| + | | width="18%" style="border-top:1px solid black" | <math>\operatorname{D5a.}</math> |
| + | | width="80%" style="border-top:1px solid black" | <math>\upharpoonleft Q \upharpoonright</math> |
| + | |- style="height:40px" |
| + | | |
| + | | <math>\operatorname{D5b.}</math> |
| + | | <math>\downharpoonleft x \in Q \downharpoonright</math> |
| + | |} |
| + | |} |
| | | |
− | If X c U,
| + | <br> |
− | | |
− | then the following are identical propositions:
| |
− | | |
− | D5a. {X}.
| |
− | | |
− | D5b. f : U -> B
| |
− | | |
− | : f(u) = [u C X], for all u C U.
| |
− | </pre> | |
| | | |
| Given an indexed set of sentences, <math>s_j\!</math> for <math>j \in J,</math> it is possible to consider the logical conjunction of the corresponding propositions. Various notations for this concept are be useful in various contexts, a sufficient sample of which are recorded in Definition 6. | | Given an indexed set of sentences, <math>s_j\!</math> for <math>j \in J,</math> it is possible to consider the logical conjunction of the corresponding propositions. Various notations for this concept are be useful in various contexts, a sufficient sample of which are recorded in Definition 6. |