Line 641: |
Line 641: |
| <br> | | <br> |
| | | |
− | <pre> | + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black" width="90%" |
− | Definition 4 | + | | |
− | | + | {| align="center" cellpadding="0" cellspacing="0" width="100%" |
− | If X c U, | + | |- style="height:40px; text-align:center" |
− | | + | | width="80%" | |
− | then the following are identical subsets of UxB: | + | | width="20%" | <math>\operatorname{Definition~4}</math> |
− | | + | |} |
− | D4a. {X} | + | |- |
− | | + | | |
− | D4b. {<u, v> C UxB : v = [u C X]} | + | {| align="center" cellpadding="0" cellspacing="0" width="100%" |
− | </pre> | + | |- style="height:40px" |
| + | | width="2%" style="border-top:1px solid black" | |
| + | | width="18%" style="border-top:1px solid black" | <math>\text{If}\!</math> |
| + | | width="80%" style="border-top:1px solid black" | <math>Q ~\subseteq~ X</math> |
| + | |- style="height:40px" |
| + | | |
| + | | <math>\text{then}\!</math> |
| + | | <math>\text{the following are identical subsets of}~ X \times \underline\mathbb{B}:</math> |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" cellpadding="0" cellspacing="0" width="100%" |
| + | |- style="height:40px" |
| + | | width="2%" style="border-top:1px solid black" | |
| + | | width="18%" style="border-top:1px solid black" | <math>\operatorname{D4a.}</math> |
| + | | width="80%" style="border-top:1px solid black" | <math>\upharpoonleft Q \upharpoonright</math> |
| + | |- style="height:40px" |
| + | | |
| + | | <math>\operatorname{D4b.}</math> |
| + | | <math>\{ (x, y) \in X \times \underline\mathbb{B} ~:~ y ~=~ \downharpoonleft x \in Q \downharpoonright</math> |
| + | |} |
| + | |} |
| | | |
| <br> | | <br> |