Changes

210 bytes added ,  20:36, 20 January 2009
→‎Examples from mathematics: mathematical markup
Line 11: Line 11:  
The ''[[boolean domain]]'' is the set <math>\mathbb{B} = \{ 0, 1 \}.</math>  The plus sign <math>^{\backprime\backprime} + ^{\prime\prime},</math> used in the context of the boolean domain <math>\mathbb{B},</math> denotes addition mod 2.  Interpreted for logic, this amounts to the same thing as the boolean operation of ''[[exclusive disjunction|exclusive or]]'' or ''not equal to''.
 
The ''[[boolean domain]]'' is the set <math>\mathbb{B} = \{ 0, 1 \}.</math>  The plus sign <math>^{\backprime\backprime} + ^{\prime\prime},</math> used in the context of the boolean domain <math>\mathbb{B},</math> denotes addition mod 2.  Interpreted for logic, this amounts to the same thing as the boolean operation of ''[[exclusive disjunction|exclusive or]]'' or ''not equal to''.
   −
The third cartesian power of <math>\mathbb{B}</math> is <math>\mathbb{B}^3 = \{ (x_1, x_2, x_3) : x_j \in \mathbb{B} ~\text{for}~ j = 1, 2, 3 \} = \mathbb{B} \times \mathbb{B} \times \mathbb{B}.</math>
+
The third cartesian power of <math>\mathbb{B}</math> is the set <math>\mathbb{B}^3 = \mathbb{B} \times \mathbb{B} \times \mathbb{B} = \{ (x_1, x_2, x_3) : x_j \in \mathbb{B} ~\text{for}~ j = 1, 2, 3 \}.</math>
    
In what follows, the space <math>X \times Y \times Z</math> is isomorphic to <math>\mathbb{B} \times \mathbb{B} \times \mathbb{B} ~=~ \mathbb{B}^3.</math>
 
In what follows, the space <math>X \times Y \times Z</math> is isomorphic to <math>\mathbb{B} \times \mathbb{B} \times \mathbb{B} ~=~ \mathbb{B}^3.</math>
Line 33: Line 33:  
The triples that make up the relations <math>L_0\!</math> and <math>L_1\!</math> are conveniently arranged in the form of ''[[relational database|relational data tables]]'', as follows:
 
The triples that make up the relations <math>L_0\!</math> and <math>L_1\!</math> are conveniently arranged in the form of ''[[relational database|relational data tables]]'', as follows:
   −
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
+
<br>
|+ '''L'''<sub>0</sub> = {(''x'', ''y'', ''z'') &isin; '''B'''<sup>3</sup> : ''x'' + ''y'' + ''z'' = 0}
+
 
|- style="background:paleturquoise"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:60%"
! X !! Y !! Z
+
|+ <math>L_0 ~=~ \{ (x, y, z) \in \mathbb{B}^3 : x + y + z = 0 \}</math>
 +
|- style="background:whitesmoke"
 +
! <math>X\!</math> !! <math>Y\!</math> !! <math>Z\!</math>
 
|-
 
|-
| '''0''' || '''0''' || '''0'''
+
| <math>0\!</math> || <math>0\!</math> || <math>0\!</math>
 
|-
 
|-
| '''0''' || '''1''' || '''1'''
+
| <math>0\!</math> || <math>1\!</math> || <math>1\!</math>
 
|-
 
|-
| '''1''' || '''0''' || '''1'''
+
| <math>1\!</math> || <math>0\!</math> || <math>1\!</math>
 
|-
 
|-
| '''1''' || '''1''' || '''0'''
+
| <math>1\!</math> || <math>1\!</math> || <math>0\!</math>
 
|}
 
|}
 +
 
<br>
 
<br>
   −
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:60%"
|+ '''L'''<sub>1</sub> = {(''x'', ''y'', ''z'') &isin; '''B'''<sup>3</sup> : ''x'' + ''y'' + ''z'' = 1}
+
|+ <math>L_1 ~=~ \{ (x, y, z) \in \mathbb{B}^3 : x + y + z = 1 \}</math>
|- style="background:paleturquoise"
+
|- style="background:whitesmoke"
! X !! Y !! Z
+
! <math>X\!</math> !! <math>Y\!</math> !! <math>Z\!</math>
 
|-
 
|-
| '''0''' || '''0''' || '''1'''
+
| <math>0\!</math> || <math>0\!</math> || <math>1\!</math>
 
|-
 
|-
| '''0''' || '''1''' || '''0'''
+
| <math>0\!</math> || <math>1\!</math> || <math>0\!</math>
 
|-
 
|-
| '''1''' || '''0''' || '''0'''
+
| <math>1\!</math> || <math>0\!</math> || <math>0\!</math>
 
|-
 
|-
| '''1''' || '''1''' || '''1'''
+
| <math>1\!</math> || <math>1\!</math> || <math>1\!</math>
 
|}
 
|}
 +
 
<br>
 
<br>
  
12,080

edits