Line 30: |
Line 30: |
| | | |
| <li> | | <li> |
− | <p>For <math>k > 1,\!</math></p> | + | <p>For <math>k > 0,\!</math></p> |
| | | |
| <p><math>\operatorname{Parse} (\operatorname{Conc}_{j=1}^k s_j) ~=~ \operatorname{Node}_{j=1}^k \operatorname{Parse} (s_j).</math></p></li> | | <p><math>\operatorname{Parse} (\operatorname{Conc}_{j=1}^k s_j) ~=~ \operatorname{Node}_{j=1}^k \operatorname{Parse} (s_j).</math></p></li> |
Line 36: |
Line 36: |
| </ol> | | </ol> |
| | | |
− | <li>The ''surcatenation'' <math>\operatorname{Surc}_{j=1}^k</math> of the sequence of <math>k\!</math> strings <math>(s_j)_{j=1}^k</math> is defined recursively as follows:</li> | + | <li>The parse of the surcatenation <math>\operatorname{Surc}_{j=1}^k</math> of the <math>k\!</math> sentences <math>(s_j)_{j=1}^k</math> is defined recursively as follows:</li> |
| | | |
| <ol style="list-style-type:lower-alpha"> | | <ol style="list-style-type:lower-alpha"> |
| | | |
− | <li><math>\operatorname{Surc}_{j=1}^1 s_j \ = \ ^{\backprime\backprime} \, \operatorname{(} \, ^{\prime\prime} \, \cdot \, s_1 \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math></li> | + | <li><math>\operatorname{Parse} (\operatorname{Surc}^0) ~=~ \operatorname{Lobe}^0.</math> |
| | | |
| <li> | | <li> |
− | <p>For <math>\ell > 1,\!</math></p> | + | <p>For <math>k > 0,\!</math></p> |
| | | |
− | <p><math>\operatorname{Surc}_{j=1}^\ell s_j \ = \ \operatorname{Surc}_{j=1}^{\ell - 1} s_j \, \cdot \, ( \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime} \, )^{-1} \, \cdot \, ^{\backprime\backprime} \, \operatorname{,} \, ^{\prime\prime} \, \cdot \, s_\ell \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math></p></li> | + | <p><math>\operatorname{Parse} (\operatorname{Surc}_{j=1}^k s_j) ~=~ \operatorname{Lobe}_{j=1}^k \operatorname{Parse} (s_j).</math></p></li> |
| | | |
| </ol></ol> | | </ol></ol> |