Line 2,883: |
Line 2,883: |
| <p>Considered in extensional form, <math>f_Q\!</math> is the subset of <math>X \times \underline\mathbb{B}</math> that is given by the following formula:</p> | | <p>Considered in extensional form, <math>f_Q\!</math> is the subset of <math>X \times \underline\mathbb{B}</math> that is given by the following formula:</p> |
| | | |
− | <p><math>f_Q \ = \ \{ (x, b) \in X \times \underline\mathbb{B} \ : \ b = \underline{1} \ \Leftrightarrow \ x \in Q \}.</math></p></li> | + | <p><math>f_Q ~=~ \{ (x, b) \in X \times \underline\mathbb{B} ~:~ b = \underline{1} ~\Leftrightarrow~ x \in Q \}.</math></p></li> |
| | | |
| <li> | | <li> |
| <p>Considered in functional form, <math>f_Q\!</math> is the map from <math>X\!</math> to <math>\underline\mathbb{B}</math> that is given by the following condition:</p> | | <p>Considered in functional form, <math>f_Q\!</math> is the map from <math>X\!</math> to <math>\underline\mathbb{B}</math> that is given by the following condition:</p> |
| | | |
− | <p><math>f_Q (x) = \underline{1} \ \Leftrightarrow \ x \in Q.</math></p></li> | + | <p><math>f_Q (x) = \underline{1} ~\Leftrightarrow~ x \in Q.</math></p></li> |
| | | |
| </ol> | | </ol> |
Line 2,901: |
Line 2,901: |
| | | |
| {| align="center" cellpadding="8" width="90%" | | {| align="center" cellpadding="8" width="90%" |
− | | <math>\operatorname{Fiber~of}~ y ~\operatorname{under}~ f \ = \ f^{-1} (y) \ = \ \{ x \in X : f(x) = y \}.</math> | + | | <math>\operatorname{Fiber~of}~ y ~\operatorname{under}~ f ~=~ f^{-1} (y) ~=~ \{ x \in X : f(x) = y \}.</math> |
| + | |} |
| + | |
| + | In the special case where <math>f\!</math> is the indicator function <math>f_Q\!</math> of a set <math>Q \subseteq X,</math> the fiber of <math>\underline{1}</math> under <math>f_Q\!</math> is just the set <math>Q\!</math> back again: |
| + | |
| + | {| align="center" cellpadding="8" width="90%" |
| + | | <math>\operatorname{Fiber~of}~ \underline{1} ~\operatorname{under}~ f_Q ~=~ f_Q ^{-1} (\underline{1}) ~=~ \{ x \in X : f_Q (x) = \underline{1} \} ~=~ Q.</math> |
| |} | | |} |
| | | |
| <pre> | | <pre> |
− | In the special case where f is the indicator function f_Q of the set Q c X, the fiber of %1% under f_Q is just the set Q back again:
| |
− |
| |
| Fiber of %1% under f_Q = (f_Q)^(-1)(%1%) = {x in X : f_Q (x) = %1%} = Q. | | Fiber of %1% under f_Q = (f_Q)^(-1)(%1%) = {x in X : f_Q (x) = %1%} = Q. |
| | | |