Changes

Line 1,403: Line 1,403:  
By way of example, suppose that we are given the initial condition <math>A = \operatorname{d}A</math> and the law <math>\operatorname{d}^2 A = (A).</math>  Since the equation <math>A = \operatorname{d}A</math> is logically equivalent to the disjunction <math>A\ \operatorname{d}A\ \operatorname{or}\ (A)(\operatorname{d}A),</math> we may infer two possible trajectories, as displayed in Table&nbsp;11.  In either case the state <math>A\ (\operatorname{d}A)(\operatorname{d}^2 A)</math> is a stable attractor or a terminal condition for both starting points.
 
By way of example, suppose that we are given the initial condition <math>A = \operatorname{d}A</math> and the law <math>\operatorname{d}^2 A = (A).</math>  Since the equation <math>A = \operatorname{d}A</math> is logically equivalent to the disjunction <math>A\ \operatorname{d}A\ \operatorname{or}\ (A)(\operatorname{d}A),</math> we may infer two possible trajectories, as displayed in Table&nbsp;11.  In either case the state <math>A\ (\operatorname{d}A)(\operatorname{d}^2 A)</math> is a stable attractor or a terminal condition for both starting points.
   −
<font face="courier new">
   
{| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:96%"
 
{| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:96%"
 
|+ '''Table 11.  A Pair of Commodious Trajectories'''
 
|+ '''Table 11.  A Pair of Commodious Trajectories'''
 
|- style="background:ghostwhite"
 
|- style="background:ghostwhite"
! Time
+
| <math>\operatorname{Time}</math>
! Trajectory 1
+
| <math>\operatorname{Trajectory}\ 1</math>
! Trajectory 2
+
| <math>\operatorname{Trajectory}\ 2</math>
 
|-
 
|-
 
|
 
|
Line 1,448: Line 1,447:  
|}
 
|}
 
|}
 
|}
</font><br>
      
Because the initial space ''X''&nbsp;=&nbsp;〈''A''〉 is one-dimensional, we can easily fit the second order extension E<sup>2</sup>''X''&nbsp;=&nbsp;〈''A'',&nbsp;d''A'',&nbsp;d<sup>2</sup>''A''〉 within the compass of a single venn diagram, charting the couple of converging trajectories as shown in Figure 12.
 
Because the initial space ''X''&nbsp;=&nbsp;〈''A''〉 is one-dimensional, we can easily fit the second order extension E<sup>2</sup>''X''&nbsp;=&nbsp;〈''A'',&nbsp;d''A'',&nbsp;d<sup>2</sup>''A''〉 within the compass of a single venn diagram, charting the couple of converging trajectories as shown in Figure 12.
12,080

edits