| Line 1,031: | Line 1,031: | 
|  | The above definition of <math>\operatorname{d}x_i : X^2 \to \mathbb{B}</math> is equivalent to defining <math>\operatorname{d}x_i : (\mathbb{B} \to X) \to \mathbb{B}</math> in the following way: |  | The above definition of <math>\operatorname{d}x_i : X^2 \to \mathbb{B}</math> is equivalent to defining <math>\operatorname{d}x_i : (\mathbb{B} \to X) \to \mathbb{B}</math> in the following way: | 
|  |  |  |  | 
| − | :{| cellpadding=2 | + | : <p><math>\begin{array}{lcrcl} | 
| − | | d''x''<sub>''i''</sub>(''q'')
 | + | \operatorname{d}x_i (q) & = & (\!|\ x_i (q_0) & , & x_i (q_1)\ |\!) \\ | 
| − | | =
 | + |                         & = &  x_i (q_0)      & + & x_i (q_1)       \\ | 
| − | | <font face=system>(</font> ''x''<sub>''i''</sub>(''q''<sub>0</sub>) ,''x''<sub>''i''</sub>(''q''<sub>1</sub>)<font face=system>)</font> | + |                         & = &  x_i (q_1)      & - & x_i (q_0).      \\ | 
| − | |-
 | + | \end{array}</math></p> | 
| − | |  
 |  | 
| − | | =
 |  | 
| − | | ''x''<sub>''i''</sub>(''q''<sub>0</sub>) +''x''<sub>''i''</sub>(''q''<sub>1</sub>)
 |  | 
| − | |-
 |  | 
| − | |  
 |  | 
| − | | =
 |  | 
| − | | ''x''<sub>''i''</sub>(''q''<sub>1</sub>) – ''x''<sub>''i''</sub>(''q''<sub>0</sub>),
 |  | 
| − | |}
 |  | 
|  |  |  |  | 
| − | where ''q''<sub>''b''</sub> = ''q''(''b''), for each ''b'' in '''B'''.  Thus, the proposition d''x''<sub>''i''</sub> is true of the path ''q'' = ‹''u'', ''v''› exactly if the terms of ''q'', the endpoints ''u'' and ''v'', lie on different sides of the question ''x''<sub>''i''</sub>.
 | + | In this definition ''q''<sub>''b''</sub> = ''q''(''b''), for each ''b'' in '''B'''.  Thus, the proposition d''x''<sub>''i''</sub> is true of the path ''q'' = ‹''u'', ''v''› exactly if the terms of ''q'', the endpoints ''u'' and ''v'', lie on different sides of the question ''x''<sub>''i''</sub>. | 
|  |  |  |  | 
|  | Now we can use the language of features in 〈d<font face="lucida calligraphy">X</font>〉, indeed the whole calculus of propositions in [d<font face="lucida calligraphy">X</font>], to classify paths and sets of paths.  In other words, the paths can be taken as models of the propositions ''g'' : d''X'' → '''B'''.  For example, the paths corresponding to ''Diag''(''X'') fall under the description <font face=system>(</font>d''x''<sub>1</sub><font face=system>)</font>…<font face=system>(</font>d''x''<sub>''n''</sub><font face=system>)</font>, which says that nothing changes among the set of features {''x''<sub>1</sub>, …, ''x''<sub>''n''</sub>}. |  | Now we can use the language of features in 〈d<font face="lucida calligraphy">X</font>〉, indeed the whole calculus of propositions in [d<font face="lucida calligraphy">X</font>], to classify paths and sets of paths.  In other words, the paths can be taken as models of the propositions ''g'' : d''X'' → '''B'''.  For example, the paths corresponding to ''Diag''(''X'') fall under the description <font face=system>(</font>d''x''<sub>1</sub><font face=system>)</font>…<font face=system>(</font>d''x''<sub>''n''</sub><font face=system>)</font>, which says that nothing changes among the set of features {''x''<sub>1</sub>, …, ''x''<sub>''n''</sub>}. |