Line 1,103: |
Line 1,103: |
| With these constructions, the differential extension <math>\operatorname{E}A</math> and the space of differential propositions <math>(\operatorname{E}A \to \mathbb{B}),</math> we have arrived, in main outline, at one of the major subgoals of this study. Table 8 summarizes the concepts that have been introduced for working with differentially extended universes of discourse. | | With these constructions, the differential extension <math>\operatorname{E}A</math> and the space of differential propositions <math>(\operatorname{E}A \to \mathbb{B}),</math> we have arrived, in main outline, at one of the major subgoals of this study. Table 8 summarizes the concepts that have been introduced for working with differentially extended universes of discourse. |
| | | |
− | <font face="courier new">
| |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:96%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:96%" |
− | |+ '''Table 8. Notation for the Differential Extension of Propositional Calculus''' | + | |+ '''Table 8. Differential Extension : Basic Notation''' |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
| ! Symbol | | ! Symbol |
Line 1,112: |
Line 1,111: |
| ! Type | | ! Type |
| |- | | |- |
− | | d<font face="lucida calligraphy">A<font> | + | | <math>\operatorname{d}\mathfrak{A}</math> |
− | | {d''a''<sub>1</sub>, …, d''a''<sub>''n''</sub>} | + | | <math>\lbrace\!</math> “<math>\operatorname{d}a_1</math>” <math>, \ldots,\!</math> “<math>\operatorname{d}a_n</math>” <math>\rbrace\!</math> |
− | | | + | | Alphabet of<br> |
− | Alphabet of<br>
| + | differential<br> |
| + | symbols |
| + | | <math>[n] = \mathbf{n}</math> |
| + | |- |
| + | | <math>\operatorname{d}\mathcal{A}</math> |
| + | | <math>\{ \operatorname{d}a_1, \ldots, \operatorname{d}a_n \}</math> |
| + | | Basis of<br> |
| differential<br> | | differential<br> |
| features | | features |
− | | [''n''] = '''n''' | + | | <math>[n] = \mathbf{n}</math> |
| |- | | |- |
− | | d''A''<sub>''i''</sub> | + | | <math>\operatorname{d}A_i</math> |
− | | {(d''a''<sub>''i''</sub>), d''a''<sub>''i''</sub>} | + | | <math>\{ (\operatorname{d}a_i), \operatorname{d}a_i \}</math> |
− | | | + | | Differential<br> |
− | Differential<br> | + | dimension <math>i\!</math> |
− | dimension ''i'' | + | | <math>\mathbb{D}</math> |
− | | '''D''' | |
| |- | | |- |
− | | d''A'' | + | | <math>\operatorname{d}A</math> |
− | | | + | | <math>\langle \operatorname{d}\mathcal{A} \rangle</math><br> |
− | 〈d<font face="lucida calligraphy">A</font>〉<br>
| + | <math>\langle \operatorname{d}a_1, \ldots, \operatorname{d}a_n \rangle</math><br> |
− | 〈d''a''<sub>1</sub>, …, d''a''<sub>''n''</sub>〉<br>
| + | <math>\{ (\operatorname{d}a_1, \ldots, \operatorname{d}a_n) \}</math><br> |
− | {‹d''a''<sub>1</sub>, …, d''a''<sub>''n''</sub>›}<br>
| + | <math>\operatorname{d}A_1 \times \ldots \times \operatorname{d}A_n</math><br> |
− | d''A''<sub>1</sub> × … × d''A''<sub>''n''</sub><br>
| + | <math>\textstyle \prod_i \operatorname{d}A_i</math> |
− | ∏<sub>''i''</sub> d''A''<sub>''i''</sub>
| + | | Tangent space<br> |
− | | | |
− | Tangent space<br> | |
| at a point:<br> | | at a point:<br> |
| Set of changes,<br> | | Set of changes,<br> |
Line 1,141: |
Line 1,143: |
| tangent vectors<br> | | tangent vectors<br> |
| at a point | | at a point |
− | | '''D'''<sup>''n''</sup> | + | | <math>\mathbb{D}^n</math> |
| |- | | |- |
− | | d''A''* | + | | <math>\operatorname{d}A^*</math> |
− | | (hom : d''A'' → '''B''') | + | | <math>(\operatorname{hom} : \operatorname{d}A \to \mathbb{B})</math> |
− | | | + | | Linear functions<br> |
− | Linear functions<br> | + | on <math>\operatorname{d}A</math> |
− | on d''A'' | + | | <math>(\mathbb{D}^n)^* \cong \mathbb{D}^n</math> |
− | | ('''D'''<sup>''n''</sup>)* = '''D'''<sup>''n''</sup> | |
| |- | | |- |
− | | d''A''^ | + | | <math>\operatorname{d}A^\uparrow</math> |
− | | (d''A'' → '''B''') | + | | <math>(\operatorname{d}A \to \mathbb{B})</math> |
− | | | + | | Boolean functions<br> |
− | Boolean functions<br> | + | on <math>\operatorname{d}A</math> |
− | on d''A'' | + | | <math>\mathbb{D}^n \to \mathbb{B}</math> |
− | | '''D'''<sup>''n''</sup> → '''B''' | |
| |- | | |- |
− | | d''A''<sup>•</sup> | + | | <math>\operatorname{d}A^\circ</math> |
− | | | + | | <math>[\operatorname{d}\mathcal{A}]</math><br> |
− | [d<font face="lucida calligraphy">A</font>]<br> | + | <math>(\operatorname{d}A, \operatorname{d}A^\uparrow)</math><br> |
− | (d''A'', d''A''^)<br> | + | <math>(\operatorname{d}A\ +\!\to \mathbb{B})</math><br> |
− | (d''A'' +→ '''B''')<br> | + | <math>(\operatorname{d}A, (\operatorname{d}A \to \mathbb{B}))</math><br> |
− | (d''A'', (d''A'' → '''B'''))<br> | + | <math>[\operatorname{d}a_1, \ldots, \operatorname{d}a_n]</math> |
− | [d''a''<sub>1</sub>, …, d''a''<sub>''n''</sub>] | + | | Tangent universe<br> |
− | | | + | at a point of <math>A^\circ,</math><br> |
− | Tangent universe<br> | |
− | at a point of ''A''<sup>•</sup>,<br> | |
| based on the<br> | | based on the<br> |
| tangent features<br> | | tangent features<br> |
− | {d''a''<sub>1</sub>, …, d''a''<sub>''n''</sub>} | + | <math>\{ \operatorname{d}a_1, \ldots, \operatorname{d}a_n \}</math> |
− | | | + | | <math>(\mathbb{D}^n, (\mathbb{D}^n \to \mathbb{B}))</math><br> |
− | ('''D'''<sup>''n''</sup>, ('''D'''<sup>''n''</sup> → '''B'''))<br> | + | <math>(\mathbb{D}^n\ +\!\to \mathbb{B})</math><br> |
− | ('''D'''<sup>''n''</sup> +→ '''B''')<br> | + | <math>[\mathbb{D}^n]</math> |
− | ['''D'''<sup>''n''</sup>] | + | |}<br> |
− | |} | |
− | </font><br>
| |
| | | |
| The adjectives ''differential'' or ''tangent'' are systematically attached to every construct based on the differential alphabet d<font face="lucida calligraphy">A</font>, taken by itself. Strictly speaking, we probably ought to call d<font face="lucida calligraphy">A</font> the set of ''cotangent'' features derived from <font face="lucida calligraphy">A</font>, but the only time this distinction really seems to matter is when we need to distinguish the tangent vectors as maps of type ('''B'''<sup>''n''</sup> → '''B''') → '''B''' from cotangent vectors as elements of type '''D'''<sup>''n''</sup>. In like fashion, having defined E<font face="lucida calligraphy">A</font> = <font face="lucida calligraphy">A</font> ∪ d<font face="lucida calligraphy">A</font>, we can systematically attach the adjective ''extended'' or the substantive ''bundle'' to all of the constructs associated with this full complement of 2''n'' features. | | The adjectives ''differential'' or ''tangent'' are systematically attached to every construct based on the differential alphabet d<font face="lucida calligraphy">A</font>, taken by itself. Strictly speaking, we probably ought to call d<font face="lucida calligraphy">A</font> the set of ''cotangent'' features derived from <font face="lucida calligraphy">A</font>, but the only time this distinction really seems to matter is when we need to distinguish the tangent vectors as maps of type ('''B'''<sup>''n''</sup> → '''B''') → '''B''' from cotangent vectors as elements of type '''D'''<sup>''n''</sup>. In like fashion, having defined E<font face="lucida calligraphy">A</font> = <font face="lucida calligraphy">A</font> ∪ d<font face="lucida calligraphy">A</font>, we can systematically attach the adjective ''extended'' or the substantive ''bundle'' to all of the constructs associated with this full complement of 2''n'' features. |