Line 2,713: |
Line 2,713: |
| | <math>(\!|(\!|~|\!)|\!)</math> | | | <math>(\!|(\!|~|\!)|\!)</math> |
| | <math>(\!|(\!|~|\!)|\!)</math> | | | <math>(\!|(\!|~|\!)|\!)</math> |
| + | |} |
| + | <br> |
| + | |
| + | =Archive 3= |
| + | |
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| + | |+ '''Table 1. Propositional Forms on Two Variables''' |
| + | |- style="background:ghostwhite" |
| + | | <math>\mathcal{L}_1</math> |
| + | | <math>\mathcal{L}_2</math> |
| + | | <math>\mathcal{L}_3</math> |
| + | | <math>\mathcal{L}_4</math> |
| + | | <math>\mathcal{L}_5</math> |
| + | | <math>\mathcal{L}_6</math> |
| + | |- style="background:ghostwhite" |
| + | | |
| + | | align="right" | <math>x\!</math> : |
| + | | 1 1 0 0 |
| + | | |
| + | | |
| + | | |
| + | |- style="background:ghostwhite" |
| + | | |
| + | | align="right" | <math>y\!</math> : |
| + | | 1 0 1 0 |
| + | | |
| + | | |
| + | | |
| + | |- |
| + | | <math>f_{0}\!</math> |
| + | | <math>f_{0000}\!</math> |
| + | | 0 0 0 0 |
| + | | <math>(~)\!</math> |
| + | | <math>\operatorname{false}</math> |
| + | | <math>0\!</math> |
| + | |- |
| + | | <math>f_{1}\!</math> |
| + | | <math>f_{0001}\!</math> |
| + | | 0 0 0 1 |
| + | | <math>(x)(y)\!</math> |
| + | | <math>\operatorname{neither}\ x\ \operatorname{nor}\ y</math> |
| + | | <math>\lnot x \land \lnot y\!</math> |
| + | |- |
| + | | <math>f_{2}\!</math> |
| + | | <math>f_{0010}\!</math> |
| + | | 0 0 1 0 |
| + | | <math>(x)\ y\!</math> |
| + | | <math>y\ \operatorname{without}\ x</math> |
| + | | <math>\lnot x \land y\!</math> |
| + | |- |
| + | | <math>f_{3}\!</math> |
| + | | <math>f_{0011}\!</math> |
| + | | 0 0 1 1 |
| + | | <math>(x)\!</math> |
| + | | <math>\operatorname{not}\ x</math> |
| + | | <math>\lnot x\!</math> |
| + | |- |
| + | | <math>f_{4}\!</math> |
| + | | <math>f_{0100}\!</math> |
| + | | 0 1 0 0 |
| + | | <math>x\ (y)\!</math> |
| + | | <math>x\ \operatorname{without}\ y</math> |
| + | | <math>x \land \lnot y\!</math> |
| + | |- |
| + | | <math>f_{5}\!</math> |
| + | | <math>f_{0101}\!</math> |
| + | | 0 1 0 1 |
| + | | <math>(y)\!</math> |
| + | | <math>\operatorname{not}\ y</math> |
| + | | <math>\lnot y\!</math> |
| + | |- |
| + | | <math>f_{6}\!</math> |
| + | | <math>f_{0110}\!</math> |
| + | | 0 1 1 0 |
| + | | <math>(x,\ y)\!</math> |
| + | | <math>x\ \operatorname{not~equal~to}\ y</math> |
| + | | <math>x \ne y\!</math> |
| + | |- |
| + | | <math>f_{7}\!</math> |
| + | | <math>f_{0111}\!</math> |
| + | | 0 1 1 1 |
| + | | <math>(x\ y)\!</math> |
| + | | <math>\operatorname{not~both}\ x\ \operatorname{and}\ y</math> |
| + | | <math>\lnot x \lor \lnot y\!</math> |
| + | |- |
| + | | <math>f_{8}\!</math> |
| + | | <math>f_{1000}\!</math> |
| + | | 1 0 0 0 |
| + | | <math>x\ y\!</math> |
| + | | <math>x\ \operatorname{and}\ y</math> |
| + | | <math>x \land y\!</math> |
| + | |- |
| + | | <math>f_{9}\!</math> |
| + | | <math>f_{1001}\!</math> |
| + | | 1 0 0 1 |
| + | | <math>((x,\ y))\!</math> |
| + | | <math>x\ \operatorname{equal~to}\ y</math> |
| + | | <math>x = y\!</math> |
| + | |- |
| + | | <math>f_{10}\!</math> |
| + | | <math>f_{1010}\!</math> |
| + | | 1 0 1 0 |
| + | | <math>y\!</math> |
| + | | <math>y\!</math> |
| + | | <math>y\!</math> |
| + | |- |
| + | | <math>f_{11}\!</math> |
| + | | <math>f_{1011}\!</math> |
| + | | 1 0 1 1 |
| + | | <math>(x\ (y))\!</math> |
| + | | <math>\operatorname{not}\ x\ \operatorname{without}\ y</math> |
| + | | <math>x \Rightarrow y\!</math> |
| + | |- |
| + | | <math>f_{12}\!</math> |
| + | | <math>f_{1100}\!</math> |
| + | | 1 1 0 0 |
| + | | <math>x\!</math> |
| + | | <math>x\!</math> |
| + | | <math>x\!</math> |
| + | |- |
| + | | <math>f_{13}\!</math> |
| + | | <math>f_{1101}\!</math> |
| + | | 1 1 0 1 |
| + | | <math>((x)\ y)\!</math> |
| + | | <math>\operatorname{not}\ y\ \operatorname{without}\ x</math> |
| + | | <math>x \Leftarrow y\!</math> |
| + | |- |
| + | | <math>f_{14}\!</math> |
| + | | <math>f_{1110}\!</math> |
| + | | 1 1 1 0 |
| + | | <math>((x)(y))\!</math> |
| + | | <math>x\ \operatorname{or}\ y</math> |
| + | | <math>x \lor y\!</math> |
| + | |- |
| + | | <math>f_{15}\!</math> |
| + | | <math>f_{1111}\!</math> |
| + | | 1 1 1 1 |
| + | | <math>((~))\!</math> |
| + | | <math>\operatorname{true}</math> |
| + | | <math>1\!</math> |
| |} | | |} |
| <br> | | <br> |
Line 2,724: |
Line 2,864: |
| By way of initial orientation, Table 1 lists equivalent expressions for the sixteen functions in a number of different languages for zeroth order logic. | | By way of initial orientation, Table 1 lists equivalent expressions for the sixteen functions in a number of different languages for zeroth order logic. |
| | | |
− | ===Table 1 : Variant 1=== | + | ===Table 1=== |
| | | |
| {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
Line 2,984: |
Line 3,124: |
| | height="36px" | <p><math>1\!</math></p> | | | height="36px" | <p><math>1\!</math></p> |
| |} | | |} |
− | |}
| |
− | <br>
| |
− |
| |
− | ===Table 1 : Variant 2===
| |
− |
| |
− | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
| |
− | |+ '''Table 1. Propositional Forms on Two Variables'''
| |
− | |- style="background:ghostwhite"
| |
− | | <math>\mathcal{L}_1</math>
| |
− | | <math>\mathcal{L}_2</math>
| |
− | | <math>\mathcal{L}_3</math>
| |
− | | <math>\mathcal{L}_4</math>
| |
− | | <math>\mathcal{L}_5</math>
| |
− | | <math>\mathcal{L}_6</math>
| |
− | |- style="background:ghostwhite"
| |
− | |
| |
− | | align="right" | <math>x\!</math> :
| |
− | | 1 1 0 0
| |
− | |
| |
− | |
| |
− | |
| |
− | |- style="background:ghostwhite"
| |
− | |
| |
− | | align="right" | <math>y\!</math> :
| |
− | | 1 0 1 0
| |
− | |
| |
− | |
| |
− | |
| |
− | |-
| |
− | | <math>f_{0}\!</math>
| |
− | | <math>f_{0000}\!</math>
| |
− | | 0 0 0 0
| |
− | | <math>(~)\!</math>
| |
− | | <math>\operatorname{false}</math>
| |
− | | <math>0\!</math>
| |
− | |-
| |
− | | <math>f_{1}\!</math>
| |
− | | <math>f_{0001}\!</math>
| |
− | | 0 0 0 1
| |
− | | <math>(x)(y)\!</math>
| |
− | | <math>\operatorname{neither}\ x\ \operatorname{nor}\ y</math>
| |
− | | <math>\lnot x \land \lnot y\!</math>
| |
− | |-
| |
− | | <math>f_{2}\!</math>
| |
− | | <math>f_{0010}\!</math>
| |
− | | 0 0 1 0
| |
− | | <math>(x)\ y\!</math>
| |
− | | <math>y\ \operatorname{without}\ x</math>
| |
− | | <math>\lnot x \land y\!</math>
| |
− | |-
| |
− | | <math>f_{3}\!</math>
| |
− | | <math>f_{0011}\!</math>
| |
− | | 0 0 1 1
| |
− | | <math>(x)\!</math>
| |
− | | <math>\operatorname{not}\ x</math>
| |
− | | <math>\lnot x\!</math>
| |
− | |-
| |
− | | <math>f_{4}\!</math>
| |
− | | <math>f_{0100}\!</math>
| |
− | | 0 1 0 0
| |
− | | <math>x\ (y)\!</math>
| |
− | | <math>x\ \operatorname{without}\ y</math>
| |
− | | <math>x \land \lnot y\!</math>
| |
− | |-
| |
− | | <math>f_{5}\!</math>
| |
− | | <math>f_{0101}\!</math>
| |
− | | 0 1 0 1
| |
− | | <math>(y)\!</math>
| |
− | | <math>\operatorname{not}\ y</math>
| |
− | | <math>\lnot y\!</math>
| |
− | |-
| |
− | | <math>f_{6}\!</math>
| |
− | | <math>f_{0110}\!</math>
| |
− | | 0 1 1 0
| |
− | | <math>(x,\ y)\!</math>
| |
− | | <math>x\ \operatorname{not~equal~to}\ y</math>
| |
− | | <math>x \ne y\!</math>
| |
− | |-
| |
− | | <math>f_{7}\!</math>
| |
− | | <math>f_{0111}\!</math>
| |
− | | 0 1 1 1
| |
− | | <math>(x\ y)\!</math>
| |
− | | <math>\operatorname{not~both}\ x\ \operatorname{and}\ y</math>
| |
− | | <math>\lnot x \lor \lnot y\!</math>
| |
− | |-
| |
− | | <math>f_{8}\!</math>
| |
− | | <math>f_{1000}\!</math>
| |
− | | 1 0 0 0
| |
− | | <math>x\ y\!</math>
| |
− | | <math>x\ \operatorname{and}\ y</math>
| |
− | | <math>x \land y\!</math>
| |
− | |-
| |
− | | <math>f_{9}\!</math>
| |
− | | <math>f_{1001}\!</math>
| |
− | | 1 0 0 1
| |
− | | <math>((x,\ y))\!</math>
| |
− | | <math>x\ \operatorname{equal~to}\ y</math>
| |
− | | <math>x = y\!</math>
| |
− | |-
| |
− | | <math>f_{10}\!</math>
| |
− | | <math>f_{1010}\!</math>
| |
− | | 1 0 1 0
| |
− | | <math>y\!</math>
| |
− | | <math>y\!</math>
| |
− | | <math>y\!</math>
| |
− | |-
| |
− | | <math>f_{11}\!</math>
| |
− | | <math>f_{1011}\!</math>
| |
− | | 1 0 1 1
| |
− | | <math>(x\ (y))\!</math>
| |
− | | <math>\operatorname{not}\ x\ \operatorname{without}\ y</math>
| |
− | | <math>x \Rightarrow y\!</math>
| |
− | |-
| |
− | | <math>f_{12}\!</math>
| |
− | | <math>f_{1100}\!</math>
| |
− | | 1 1 0 0
| |
− | | <math>x\!</math>
| |
− | | <math>x\!</math>
| |
− | | <math>x\!</math>
| |
− | |-
| |
− | | <math>f_{13}\!</math>
| |
− | | <math>f_{1101}\!</math>
| |
− | | 1 1 0 1
| |
− | | <math>((x)\ y)\!</math>
| |
− | | <math>\operatorname{not}\ y\ \operatorname{without}\ x</math>
| |
− | | <math>x \Leftarrow y\!</math>
| |
− | |-
| |
− | | <math>f_{14}\!</math>
| |
− | | <math>f_{1110}\!</math>
| |
− | | 1 1 1 0
| |
− | | <math>((x)(y))\!</math>
| |
− | | <math>x\ \operatorname{or}\ y</math>
| |
− | | <math>x \lor y\!</math>
| |
− | |-
| |
− | | <math>f_{15}\!</math>
| |
− | | <math>f_{1111}\!</math>
| |
− | | 1 1 1 1
| |
− | | <math>((~))\!</math>
| |
− | | <math>\operatorname{true}</math>
| |
− | | <math>1\!</math>
| |
| |} | | |} |
| <br> | | <br> |