Line 580: |
Line 580: |
| '''The Extended Universe of Discourse''' | | '''The Extended Universe of Discourse''' |
| | | |
− | Next, we define the so-called ''extended alphabet'' or ''bundled alphabet'' E<font face="lucida calligraphy">A</font> as: | + | Next, we define the so-called ''extended alphabet'' or ''bundled alphabet'' <math>\operatorname{E}\mathcal{A}</math> as: |
| | | |
− | : E<font face="lucida calligraphy">A</font> = <font face="lucida calligraphy">A</font> ∪ d<font face="lucida calligraphy">A</font> = {''a''<sub>1</sub>, …, ''a''<sub>''n''</sub>, d''a''<sub>1</sub>, …, d''a''<sub>''n''</sub>} | + | : <math>\operatorname{E}\mathcal{A} = \mathcal{A} \cup \operatorname{d}\mathcal{A} = \{a_1, \ldots, a_n, \operatorname{d}a_1, \ldots, \operatorname{d}a_n \}.</math> |
| | | |
− | This supplies enough material to construct the ''differential extension'' E''A'', or the ''tangent bundle'' over the initial space ''A'', in the following fashion: | + | This supplies enough material to construct the ''differential extension'' <math>\operatorname{E}A</math>, or the ''tangent bundle'' over the initial space <math>A\!</math>, in the following fashion: |
| | | |
| :{| cellpadding=2 | | :{| cellpadding=2 |
− | | E''A'' | + | | <math>\operatorname{E}A</math> |
| | = | | | = |
− | | ''A'' × d''A'' | + | | <math>A \times \operatorname{d}A</math> |
| |- | | |- |
| | | | | |
| | = | | | = |
− | | 〈E<font face="lucida calligraphy">A</font>〉 | + | | <math>\langle \operatorname{E}\mathcal{A} \rangle</math> |
| |- | | |- |
| | | | | |
| | = | | | = |
− | | 〈<font face="lucida calligraphy">A</font> ∪ d<font face="lucida calligraphy">A</font>〉 | + | | <math>\langle \mathcal{A} \cup \operatorname{d}\mathcal{A} \rangle</math> |
| |- | | |- |
| | | | | |
| | = | | | = |
− | | 〈''a''<sub>1</sub>, …, ''a''<sub>''n''</sub>, d''a''<sub>1</sub>, …, d''a''<sub>''n''</sub>〉, | + | | <math>\langle a_1, \ldots, a_n, \operatorname{d}a_1, \ldots, \operatorname{d}a_n \rangle,</math> |
| |} | | |} |
| | | |
− | thus giving E''A'' the type '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>. | + | thus giving <math>\operatorname{E}A</math> the type <math>\mathbb{B}^n \times \mathbb{D}^n.</math> |
| | | |
| Finally, the tangent universe E''A''<sup> •</sup> = [E<font face="lucida calligraphy">A</font>] is constituted from the totality of points and maps, or interpretations and propositions, that are based on the extended set of features E<font face="lucida calligraphy">A</font>: | | Finally, the tangent universe E''A''<sup> •</sup> = [E<font face="lucida calligraphy">A</font>] is constituted from the totality of points and maps, or interpretations and propositions, that are based on the extended set of features E<font face="lucida calligraphy">A</font>: |