Changes

Line 580: Line 580:  
'''The Extended Universe of Discourse'''
 
'''The Extended Universe of Discourse'''
   −
Next, we define the so-called ''extended alphabet'' or ''bundled alphabet'' E<font face="lucida calligraphy">A</font> as:
+
Next, we define the so-called ''extended alphabet'' or ''bundled alphabet'' <math>\operatorname{E}\mathcal{A}</math> as:
   −
: E<font face="lucida calligraphy">A</font> = <font face="lucida calligraphy">A</font> &cup; d<font face="lucida calligraphy">A</font> = {''a''<sub>1</sub>,&nbsp;&hellip;,&nbsp;''a''<sub>''n''</sub>,&nbsp;d''a''<sub>1</sub>,&nbsp;&hellip;,&nbsp;d''a''<sub>''n''</sub>}
+
: <math>\operatorname{E}\mathcal{A} = \mathcal{A} \cup \operatorname{d}\mathcal{A} = \{a_1, \ldots, a_n, \operatorname{d}a_1, \ldots, \operatorname{d}a_n \}.</math>
   −
This supplies enough material to construct the ''differential extension'' E''A'', or the ''tangent bundle'' over the initial space ''A'', in the following fashion:
+
This supplies enough material to construct the ''differential extension'' <math>\operatorname{E}A</math>, or the ''tangent bundle'' over the initial space <math>A\!</math>, in the following fashion:
    
:{| cellpadding=2
 
:{| cellpadding=2
| E''A''
+
| <math>\operatorname{E}A</math>
 
| =
 
| =
| ''A'' &times; d''A''
+
| <math>A \times \operatorname{d}A</math>
 
|-
 
|-
 
| &nbsp;
 
| &nbsp;
 
| =
 
| =
| 〈E<font face="lucida calligraphy">A</font>
+
| <math>\langle \operatorname{E}\mathcal{A} \rangle</math>
 
|-
 
|-
 
| &nbsp;
 
| &nbsp;
 
| =
 
| =
| <font face="lucida calligraphy">A</font> &cup; d<font face="lucida calligraphy">A</font>
+
| <math>\langle \mathcal{A} \cup \operatorname{d}\mathcal{A} \rangle</math>
 
|-
 
|-
 
| &nbsp;
 
| &nbsp;
 
| =
 
| =
| 〈''a''<sub>1</sub>,&nbsp;&hellip;,&nbsp;''a''<sub>''n''</sub>,&nbsp;d''a''<sub>1</sub>,&nbsp;&hellip;,&nbsp;d''a''<sub>''n''</sub>〉,
+
| <math>\langle a_1, \ldots, a_n, \operatorname{d}a_1, \ldots, \operatorname{d}a_n \rangle,</math>
 
|}
 
|}
   −
thus giving E''A'' the type '''B'''<sup>''n''</sup> &times; '''D'''<sup>''n''</sup>.
+
thus giving <math>\operatorname{E}A</math> the type <math>\mathbb{B}^n \times \mathbb{D}^n.</math>
    
Finally, the tangent universe E''A''<sup>&nbsp;&bull;</sup> = [E<font face="lucida calligraphy">A</font>] is constituted from the totality of points and maps, or interpretations and propositions, that are based on the extended set of features E<font face="lucida calligraphy">A</font>:
 
Finally, the tangent universe E''A''<sup>&nbsp;&bull;</sup> = [E<font face="lucida calligraphy">A</font>] is constituted from the totality of points and maps, or interpretations and propositions, that are based on the extended set of features E<font face="lucida calligraphy">A</font>:
12,080

edits