Changes

Line 757: Line 757:  
Discuss variation in portrayal of ''v'' in d''f''(''u'', ''v''):
 
Discuss variation in portrayal of ''v'' in d''f''(''u'', ''v''):
   −
* <p>as ordinary vector in second component of product space '''B'''<sup>''n''</sup>&nbsp;&times;&nbsp;'''B'''<sup>''n''</sup>,</p>
+
:{| cellpadding="4"
 
+
| 1.
* <p>as tangent vector map : ('''B'''<sup>''n''</sup>&nbsp;&rarr;&nbsp;'''B''')&nbsp;&rarr;&nbsp;'''B''', dual to '''B'''<sup>''n''</sup> ?</p>
+
| as ordinary vector in second component of product space '''B'''<sup>''n''</sup>&nbsp;&times;&nbsp;'''B'''<sup>''n''</sup>,
 
+
|-
* <p>as tangent vector map : ('''D'''<sup>''n''</sup>&nbsp;&rarr;&nbsp;'''B''')&nbsp;&rarr;&nbsp;'''B''', dual to '''D'''<sup>''n''</sup> ?</p>
+
| 2.
 +
| as tangent vector map : ('''B'''<sup>''n''</sup>&nbsp;&rarr;&nbsp;'''B''')&nbsp;&rarr;&nbsp;'''B''', dual to '''B'''<sup>''n''</sup> ?
 +
|-
 +
| 3.
 +
| as tangent vector map : ('''D'''<sup>''n''</sup>&nbsp;&rarr;&nbsp;'''B''')&nbsp;&rarr;&nbsp;'''B''', dual to '''D'''<sup>''n''</sup> ?
 +
|}
    
Discuss differential as map : T(''U'') = ''U''T&nbsp;&rarr;&nbsp;'''B'''.
 
Discuss differential as map : T(''U'') = ''U''T&nbsp;&rarr;&nbsp;'''B'''.
Line 769: Line 774:  
It helps to introduce some notation:
 
It helps to introduce some notation:
   −
<pre>
+
:{| cellpadding="4"
Let R = {real values}
+
| Let
 
+
| '''R'''
Let B = {boolean values} = {0, 1} = {false, true}.
+
| =
 
+
| {real values}
Let X = Rn, f: Rn -> R.
+
| &nbsp;
 
+
|-
Let U = Bn, p: Bn -> B.
+
| Let
</pre>
+
| '''B'''
 +
| =
 +
| {boolean values}
 +
| = {0, 1} = {false, true}.
 +
|-
 +
| Let
 +
| ''X''
 +
| =
 +
| '''R'''<sup>''n''</sup>,
 +
| ''f'' : '''R'''<sup>''n''</sup> &rarr; '''R'''.
 +
|-
 +
| Let
 +
| ''U''
 +
| =
 +
| '''B'''<sup>''n''</sup>,
 +
| ''p'' : '''B'''<sup>''n''</sup> &rarr; '''B'''.
 +
|}
    
In these terms, analogies of the following form are being explored:
 
In these terms, analogies of the following form are being explored:
12,080

edits