Line 757: |
Line 757: |
| Discuss variation in portrayal of ''v'' in d''f''(''u'', ''v''): | | Discuss variation in portrayal of ''v'' in d''f''(''u'', ''v''): |
| | | |
− | * <p>as ordinary vector in second component of product space '''B'''<sup>''n''</sup> × '''B'''<sup>''n''</sup>,</p>
| + | :{| cellpadding="4" |
− | | + | | 1. |
− | * <p>as tangent vector map : ('''B'''<sup>''n''</sup> → '''B''') → '''B''', dual to '''B'''<sup>''n''</sup> ?</p>
| + | | as ordinary vector in second component of product space '''B'''<sup>''n''</sup> × '''B'''<sup>''n''</sup>, |
− | | + | |- |
− | * <p>as tangent vector map : ('''D'''<sup>''n''</sup> → '''B''') → '''B''', dual to '''D'''<sup>''n''</sup> ?</p>
| + | | 2. |
| + | | as tangent vector map : ('''B'''<sup>''n''</sup> → '''B''') → '''B''', dual to '''B'''<sup>''n''</sup> ? |
| + | |- |
| + | | 3. |
| + | | as tangent vector map : ('''D'''<sup>''n''</sup> → '''B''') → '''B''', dual to '''D'''<sup>''n''</sup> ? |
| + | |} |
| | | |
| Discuss differential as map : T(''U'') = ''U''T → '''B'''. | | Discuss differential as map : T(''U'') = ''U''T → '''B'''. |
Line 769: |
Line 774: |
| It helps to introduce some notation: | | It helps to introduce some notation: |
| | | |
− | <pre>
| + | :{| cellpadding="4" |
− | Let R = {real values}
| + | | Let |
− | | + | | '''R''' |
− | Let B = {boolean values} = {0, 1} = {false, true}.
| + | | = |
− | | + | | {real values} |
− | Let X = Rn, f: Rn -> R.
| + | | |
− | | + | |- |
− | Let U = Bn, p: Bn -> B.
| + | | Let |
− | </pre>
| + | | '''B''' |
| + | | = |
| + | | {boolean values} |
| + | | = {0, 1} = {false, true}. |
| + | |- |
| + | | Let |
| + | | ''X'' |
| + | | = |
| + | | '''R'''<sup>''n''</sup>, |
| + | | ''f'' : '''R'''<sup>''n''</sup> → '''R'''. |
| + | |- |
| + | | Let |
| + | | ''U'' |
| + | | = |
| + | | '''B'''<sup>''n''</sup>, |
| + | | ''p'' : '''B'''<sup>''n''</sup> → '''B'''. |
| + | |} |
| | | |
| In these terms, analogies of the following form are being explored: | | In these terms, analogies of the following form are being explored: |