Changes

Line 2,408: Line 2,408:  
We come now to the very special cases of 2-adic relations that are known as functions.  It will serve a dual purpose on behalf of the exposition if we take the class of functions as a source of object examples to clarify the more abstruse concepts in the RIG material.
 
We come now to the very special cases of 2-adic relations that are known as functions.  It will serve a dual purpose on behalf of the exposition if we take the class of functions as a source of object examples to clarify the more abstruse concepts in the RIG material.
   −
To begin, let's recall the definition of a local flag:
+
To begin, let's recall the definition of a ''local flag'':
   −
<pre>
+
: ''L''<sub>''x''.''j''</sub> = { (''x''<sub>1</sub>, , ''x''<sub>''j''</sub>, , ''x''<sub>''k''</sub>) &isin; ''L'' : ''x''<sub>''j''</sub> = ''x'' }.
L_x@j = {<x_1, ..., x_j, ..., x_k> in L : x_j = x}.
  −
</pre>
  −
 
  −
In the case of a 2-adic relation L c X_1 x X_2 = X x Y, we can reap the benefits of a radical simplification in the definitions of the local flags.  Also in this case, we tend to denote L_u@1 by "L_u@X" and L_v@2 by "L_v@Y".
     −
In the light of these considerations, the local flags of a 2-adic relation L c X x Y may be formulated as follows:
+
In the case of a 2-adic relation ''L''&nbsp;&sube;&nbsp;''X''<sub>1</sub>&nbsp;&times;&nbsp;''X''<sub>2</sub> = ''X''&nbsp;&times;&nbsp;''Y'', we can reap the benefits of a radical simplification in the definitions of the local flags.  Also in this case, we tend to denote ''L''<sub>''u''.1</sub> by "''L''<sub>''u''.''X''</sub>" and ''L''<sub>''v''.2</sub> by "''L''<sub>''v''.''Y''</sub>".
   −
<pre>
+
In the light of these considerations, the local flags of a 2-adic relation ''L''&nbsp;&sube;&nbsp;''X''&nbsp;&times;&nbsp;''Y'' may be formulated as follows:
L_u@X  =  {<x, y> in L : x = u}
     −
      = the set of all ordered pairs in L incident with u in X.
+
{| cellpadding="4"
 
+
| ''L''<sub>''u''.''X''</sub>
L_v@Y = {<x, y> in L : y = v}
+
| =
 
+
| {(x, y) &isin; ''L'' : ''x'' = ''u''}
      = the set of all ordered pairs in L incident with v in Y.
+
|-
</pre>
+
| &nbsp;
 +
| =
 +
| the set of all ordered pairs in ''L'' incident with ''u'' in ''X''.
 +
|-
 +
| ''L''<sub>''v''.''Y''</sub>
 +
| =
 +
| {(''x'', ''y'') &isin; ''L'' : ''y'' = ''v''}
 +
|-
 +
| &nbsp;
 +
| =
 +
| the set of all ordered pairs in ''L'' incident with ''v'' in ''Y''.
 +
|}
    
A sufficient illustration is supplied by the earlier example ''E''.
 
A sufficient illustration is supplied by the earlier example ''E''.
Line 2,440: Line 2,446:  
</pre>
 
</pre>
   −
The local flag E_3@X is displayed here:
+
The local flag ''E''<sub>3.''X''</sub> is displayed here:
    
<pre>
 
<pre>
Line 2,446: Line 2,452:  
o  o  o  o  o  o  o  o  o  o  X
 
o  o  o  o  o  o  o  o  o  o  X
 
           /|\
 
           /|\
           / | \                        E_3@X
+
           / | \                        E_3.X
 
         /  |  \
 
         /  |  \
 
o  o  o  o  o  o  o  o  o  o  Y
 
o  o  o  o  o  o  o  o  o  o  Y
Line 2,452: Line 2,458:  
</pre>
 
</pre>
   −
The local flag E_2@Y is displayed here:
+
The local flag ''E''<sub>2.''Y''</sub> is displayed here:
    
<pre>
 
<pre>
Line 2,458: Line 2,464:  
o  o  o  o  o  o  o  o  o  o  X
 
o  o  o  o  o  o  o  o  o  o  X
 
     \  |  /
 
     \  |  /
       \ | /                            E_2@Y
+
       \ | /                            E_2.Y
 
       \|/
 
       \|/
 
o  o  o  o  o  o  o  o  o  o  Y
 
o  o  o  o  o  o  o  o  o  o  Y
12,080

edits