Line 8,095: |
Line 8,095: |
| | = ('''B'''<sup>''n''</sup> +→ '''B''') = ['''B'''<sup>''n''</sup>] | | | = ('''B'''<sup>''n''</sup> +→ '''B''') = ['''B'''<sup>''n''</sup>] |
| |} | | |} |
− | |-
| |
− | |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
| |
− | | <math>\epsilon</math>
| |
− | |-
| |
− | | <math>\eta</math>
| |
− | |-
| |
− | | E
| |
− | |-
| |
− | | D
| |
− | |-
| |
− | | d
| |
− | |}
| |
− | | valign="top" |
| |
− | | colspan="2" |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:60%"
| |
− | | Tacit Extension Operator || <math>\epsilon</math>
| |
− | |-
| |
− | | Trope Extension Operator || <math>\eta</math>
| |
− | |-
| |
− | | Enlargement Operator || E
| |
− | |-
| |
− | | Difference Operator || D
| |
− | |-
| |
− | | Differential Operator || d
| |
− | |}
| |
− | |-
| |
− | | valign="top" |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
| |
− | | <font face=georgia>'''W'''</font>
| |
− | |}
| |
− | | valign="top" |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
| |
− | | <font face=georgia>'''W'''</font> :
| |
− | |-
| |
− | | ''U''<sup> •</sup> → <font face=georgia>'''T'''</font>''U''<sup> •</sup> = E''U''<sup> •</sup> ,
| |
− | |-
| |
− | | ''X''<sup> •</sup> → <font face=georgia>'''T'''</font>''X''<sup> •</sup> = E''X''<sup> •</sup> ,
| |
− | |-
| |
− | | (''U''<sup> •</sup> → ''X''<sup> •</sup>)
| |
− | |-
| |
− | | →
| |
− | |-
| |
− | | (<font face=georgia>'''T'''</font>''U''<sup> •</sup> → <font face=georgia>'''T'''</font>''X''<sup> •</sup>) ,
| |
− | |-
| |
− | | for each <font face=georgia>'''W'''</font> in the set:
| |
− | |-
| |
− | | {<font face=georgia>'''e'''</font>, <font face=georgia>'''E'''</font>, <font face=georgia>'''D'''</font>, <font face=georgia>'''T'''</font>}
| |
− | |}
| |
− | | valign="top" |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
| |
− | | Operator
| |
− | |}
| |
− | | valign="top" |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100"
| |
− | |
| |
− | |-
| |
− | | ['''B'''<sup>2</sup>] → ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] ,
| |
− | |-
| |
− | | ['''B'''<sup>1</sup>] → ['''B'''<sup>1</sup> × '''D'''<sup>1</sup>] ,
| |
− | |-
| |
− | | (['''B'''<sup>2</sup>] → ['''B'''<sup>1</sup>])
| |
− | |-
| |
− | | →
| |
− | |-
| |
− | | (['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B'''<sup>1</sup> × '''D'''<sup>1</sup>])
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |}
| |
− | |-
| |
− | |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
| |
− | | <font face=georgia>'''e'''</font>
| |
− | |-
| |
− | | <font face=georgia>'''E'''</font>
| |
− | |-
| |
− | | <font face=georgia>'''D'''</font>
| |
− | |-
| |
− | | <font face=georgia>'''T'''</font>
| |
− | |}
| |
− | | valign="top" |
| |
− | | colspan="2" |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:60%"
| |
− | | Radius Operator || <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>›
| |
− | |-
| |
− | | Secant Operator || <font face=georgia>'''E'''</font> = ‹<math>\epsilon</math>, E›
| |
− | |-
| |
− | | Chord Operator || <font face=georgia>'''D'''</font> = ‹<math>\epsilon</math>, D›
| |
− | |-
| |
− | | Tangent Functor || <font face=georgia>'''T'''</font> = ‹<math>\epsilon</math>, d›
| |
− | |}
| |
− | |}<br>
| |
− |
| |
− |
| |
− | <pre>
| |
− | -------------o
| |
− | | W | W : | Operator | |
| |
− | | | U% -> EU%, | | [B^n] -> [B^n x D^n], |
| |
− | | | X% -> EX%, | | [B^k] -> [B^k x D^k], |
| |
− | | | (U%->X%)->(EU%->EX%), | | ([B^n] -> [B^k]) |
| |
− | | | for each W among: | | -> |
| |
− | | | !e!, !h!, E, D, d | | ([B^n x D^n]->[B^k x D^k]) |
| |
− | -------------o
| |
− | | !e! | | Tacit Extension Operator !e!
| |
− | | !h! | | Trope Extension Operator !h!
| |
− | | E | | Enlargement Operator E
| |
− | | D | | Difference Operator D
| |
− | | d | | Differential Operator d
| |
− | -------------o
| |
− | | $W$ | $W$ : | Operator | |
| |
− | | | U% -> $T$U% = EU%, | | [B^n] -> [B^n x D^n], |
| |
− | | | X% -> $T$X% = EX%, | | [B^k] -> [B^k x D^k], |
| |
− | | | (U%->X%)->($T$U%->$T$X%)| | ([B^n] -> [B^k]) |
| |
− | | | for each $W$ among: | | -> |
| |
− | | | $e$, $E$, $D$, $T$ | | ([B^n x D^n]->[B^k x D^k]) |
| |
− | -------------o
| |
− | | $e$ | | Radius Operator $e$ = <!e!, !h!> |
| |
− | | $E$ | | Secant Operator $E$ = <!e!, E > |
| |
− | | $D$ | | Chord Operator $D$ = <!e!, D > |
| |
− | | $T$ | | Tangent Functor $T$ = <!e!, d > |
| |
− | -------------o
| |
− | </pre>
| |
− |
| |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:left; width:96%"
| |
− | |+ '''Table 54. Cast of Characters: Expansive Subtypes of Objects and Operators'''
| |
− | |- style="background:paleturquoise"
| |
− | ! Item
| |
− | ! Notation
| |
− | ! Description
| |
− | ! Type
| |
− | |-
| |
− | | ''U''<sup> •</sup>
| |
− | | = [''u'', ''v'']
| |
− | | Source Universe
| |
− | | ['''B'''<sup>2</sup>]
| |
− | |-
| |
− | | ''X''<sup> •</sup>
| |
− | | = [''x'']
| |
− | | Target Universe
| |
− | | ['''B'''<sup>1</sup>]
| |
− | |-
| |
− | | E''U''<sup> •</sup>
| |
− | | = [''u'', ''v'', d''u'', d''v'']
| |
− | | Extended Source Universe
| |
− | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>]
| |
− | |-
| |
− | | E''X''<sup> •</sup>
| |
− | | = [''x'', d''x'']
| |
− | | Extended Target Universe
| |
− | | ['''B'''<sup>1</sup> × '''D'''<sup>1</sup>]
| |
− | |-
| |
− | | ''J''
| |
− | | ''J'' : ''U'' → '''B'''
| |
− | | Proposition
| |
− | | ('''B'''<sup>2</sup> → '''B''') ∈ ['''B'''<sup>2</sup>]
| |
− | |-
| |
− | | ''J''
| |
− | | ''J'' : ''U''<sup> •</sup> → ''X''<sup> •</sup>
| |
− | | Transformation, or Mapping
| |
− | | ['''B'''<sup>2</sup>] → ['''B'''<sup>1</sup>]
| |
| |- | | |- |
| | valign="top" | | | | valign="top" | |
Line 8,396: |
Line 8,234: |
| |} | | |} |
| |}<br> | | |}<br> |
| + | |
| + | <pre> |
| + | -------------o |
| + | | W | W : | Operator | | |
| + | | | U% -> EU%, | | [B^n] -> [B^n x D^n], | |
| + | | | X% -> EX%, | | [B^k] -> [B^k x D^k], | |
| + | | | (U%->X%)->(EU%->EX%), | | ([B^n] -> [B^k]) | |
| + | | | for each W among: | | -> | |
| + | | | !e!, !h!, E, D, d | | ([B^n x D^n]->[B^k x D^k]) | |
| + | -------------o |
| + | | !e! | | Tacit Extension Operator !e! |
| + | | !h! | | Trope Extension Operator !h! |
| + | | E | | Enlargement Operator E |
| + | | D | | Difference Operator D |
| + | | d | | Differential Operator d |
| + | -------------o |
| + | | $W$ | $W$ : | Operator | | |
| + | | | U% -> $T$U% = EU%, | | [B^n] -> [B^n x D^n], | |
| + | | | X% -> $T$X% = EX%, | | [B^k] -> [B^k x D^k], | |
| + | | | (U%->X%)->($T$U%->$T$X%)| | ([B^n] -> [B^k]) | |
| + | | | for each $W$ among: | | -> | |
| + | | | $e$, $E$, $D$, $T$ | | ([B^n x D^n]->[B^k x D^k]) | |
| + | -------------o |
| + | | $e$ | | Radius Operator $e$ = <!e!, !h!> | |
| + | | $E$ | | Secant Operator $E$ = <!e!, E > | |
| + | | $D$ | | Chord Operator $D$ = <!e!, D > | |
| + | | $T$ | | Tangent Functor $T$ = <!e!, d > | |
| + | -------------o |
| + | </pre> |
| | | |
| ===Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes=== | | ===Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes=== |