Line 5,720: |
Line 5,720: |
| Let us now summarize the results of Table 50 by writing down for each column, and for each block of constant ‹''u'', ''v''›, a reasonably canonical symbolic expression for the function of ‹d''u'', d''v''› that appears there. The synopsis formed in this way is presented in Table 51. As one has a right to expect, it confirms the results that were obtained previously by operating solely in terms of the formal calculus. | | Let us now summarize the results of Table 50 by writing down for each column, and for each block of constant ‹''u'', ''v''›, a reasonably canonical symbolic expression for the function of ‹d''u'', d''v''› that appears there. The synopsis formed in this way is presented in Table 51. As one has a right to expect, it confirms the results that were obtained previously by operating solely in terms of the formal calculus. |
| | | |
− | <pre> | + | <font face="courier new"> |
− | Table 51. Computation of an Analytic Series in Symbolic Terms | + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
− | o-----------o---------o------------o------------o------------o-----------o
| + | |+ Table 51. Computation of an Analytic Series in Symbolic Terms |
− | | u v | J | EJ | DJ | dJ | d^2.J | | + | | |
− | o-----------o---------o------------o------------o------------o-----------o
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
− | | | | | | | | | + | | ''u'' || ''v'' |
− | | 0 0 | 0 | du dv | du dv | () | du dv | | + | |} |
− | | | | | | | | | + | | |
− | | 0 1 | 0 | du (dv) | du (dv) | du | du dv | | + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
− | | | | | | | | | + | | ''J'' |
− | | 1 0 | 0 | (du) dv | (du) dv | dv | du dv | | + | |} |
− | | | | | | | | | + | | |
− | | 1 1 | 1 | (du)(dv) | ((du)(dv)) | (du, dv) | du dv | | + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
− | | | | | | | | | + | | E''J'' |
− | o-----------o---------o------------o------------o------------o-----------o
| + | |} |
− | </pre> | + | | |
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | D''J'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | d''J'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | d<sup>2</sup>''J'' |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | d''u'' d''v'' |
| + | |- |
| + | | d''u'' (d''v'') |
| + | |- |
| + | | (d''u'') d''v'' |
| + | |- |
| + | | (d''u'')(d''v'') |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | d''u'' d''v'' |
| + | |- |
| + | | d''u'' (d''v'') |
| + | |- |
| + | | (d''u'') d''v'' |
| + | |- |
| + | | ((d''u'')(d''v'')) |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | () |
| + | |- |
| + | | d''u'' |
| + | |- |
| + | | d''v'' |
| + | |- |
| + | | (d''u'', d''v'') |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | d''u'' d''v'' |
| + | |- |
| + | | d''u'' d''v'' |
| + | |- |
| + | | d''u'' d''v'' |
| + | |- |
| + | | d''u'' d''v'' |
| + | |} |
| + | |} |
| + | </font><br> |
| | | |
| Figures 52 and 53 provide a quick overview of the analysis performed so far, giving the successive decompositions of E''J'' = ''J'' + D''J'' and D''J'' = d''J'' + r''J'' in two different styles of diagram. | | Figures 52 and 53 provide a quick overview of the analysis performed so far, giving the successive decompositions of E''J'' = ''J'' + D''J'' and D''J'' = d''J'' + r''J'' in two different styles of diagram. |