Line 10,677: |
Line 10,677: |
| | | |
| =====Computation of ε''f''<sub>9</sub>===== | | =====Computation of ε''f''<sub>9</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F9.1} ~~ \text{Computation of}~ \boldsymbol\varepsilon f_{9}\!</math> |
| + | | |
| + | <math>\begin{array}{*{10}{l}} |
| + | \boldsymbol\varepsilon f_{9} |
| + | & = && f_{9}(u, v) |
| + | \\[4pt] |
| + | & = && \texttt{((} u \texttt{,~} v \texttt{))} |
| + | \\[4pt] |
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot f_{9}(1, 1) |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot f_{9}(1, 0) |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot f_{9}(0, 1) |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot f_{9}(0, 0) |
| + | \\[4pt] |
| + | & = && u v & + & 0 & + & 0 & + & \texttt{(} u \texttt{)(} v \texttt{)} |
| + | \\[20pt] |
| + | \boldsymbol\varepsilon f_{9} |
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | & + & 0 |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | \\[4pt] |
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | & + & 0 |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | \\[4pt] |
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | & + & 0 |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | \\[4pt] |
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} |
| + | & + & 0 |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| | | |
| =====Computation of E''f''<sub>9</sub>===== | | =====Computation of E''f''<sub>9</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F9.2} ~~ \text{Computation of}~ \mathrm{E}f_{9}\!</math> |
| + | | |
| + | <math>\begin{array}{*{10}{l}} |
| + | \mathrm{E}f_{9} |
| + | & = && f_{9}(u + \mathrm{d}u, v + \mathrm{d}v) |
| + | \\[4pt] |
| + | & = && \texttt{(((} u \texttt{,} \mathrm{d}u \texttt{),(} v \texttt{,} \mathrm{d}v \texttt{)))} |
| + | \\[4pt] |
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \!\cdot\! f_{9}(\texttt{(} \mathrm{d}u \texttt{)}, \texttt{(} \mathrm{d}v \texttt{)}) |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \!\cdot\! f_{9}(\texttt{(} \mathrm{d}u \texttt{)}, \texttt{ } \mathrm{d}v \texttt{ }) |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! f_{9}(\texttt{ } \mathrm{d}u \texttt{ }, \texttt{(} \mathrm{d}v \texttt{)}) |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! f_{9}(\texttt{ } \mathrm{d}u \texttt{ }, \texttt{ } \mathrm{d}v \texttt{ }) |
| + | \\[4pt] |
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \!\cdot\! \texttt{((} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{))} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \!\cdot\! \texttt{ (} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{) } |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{ (} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{) } |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{((} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{))} |
| + | \\[20pt] |
| + | \mathrm{E}f_{9} |
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | & + & 0 |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | \\[4pt] |
| + | && + & 0 |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | & + & 0 |
| + | \\[4pt] |
| + | && + & 0 |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | & + & 0 |
| + | \\[4pt] |
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} |
| + | & + & 0 |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| | | |
| =====Computation of D''f''<sub>9</sub>===== | | =====Computation of D''f''<sub>9</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F9.3-i} ~~ \text{Computation of}~ \mathrm{D}f_{9} ~\text{(Method 1)}\!</math> |
| + | | |
| + | <math>\begin{array}{*{10}{l}} |
| + | \mathrm{D}f_{9} |
| + | & = && \mathrm{E}f_{9} |
| + | & + & \boldsymbol\varepsilon f_{9} |
| + | \\[4pt] |
| + | & = && f_{9}(u + \mathrm{d}u, v + \mathrm{d}v) |
| + | & + & f_{9}(u, v) |
| + | \\[4pt] |
| + | & = && \texttt{(((} u \texttt{,} \mathrm{d}u \texttt{),(} v \texttt{,} \mathrm{d}v \texttt{)))} |
| + | & + & \texttt{((} u \texttt{,} v \texttt{))} |
| + | \\[20pt] |
| + | \mathrm{D}f_{9} |
| + | & = && 0 |
| + | & + & 0 |
| + | & + & 0 |
| + | & + & 0 |
| + | \\[4pt] |
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | \\[4pt] |
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \!\cdot\! \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \!\cdot\! \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | \\[4pt] |
| + | & = && 0 |
| + | & + & 0 |
| + | & + & 0 |
| + | & + & 0 |
| + | \\[20pt] |
| + | \mathrm{D}f_{9} |
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \!\cdot\! \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F9.3-ii} ~~ \text{Computation of}~ \mathrm{D}f_{9} ~\text{(Method 2)}\!</math> |
| + | | |
| + | <math>\begin{array}{*{9}{l}} |
| + | \mathrm{D}f_{9} |
| + | & = & 0 \cdot \mathrm{d}u \cdot \mathrm{d}v |
| + | & + & 1 \cdot \mathrm{d}u ~ \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & 1 \cdot \texttt{(} \mathrm{d}u \texttt{)} ~ \mathrm{d}v |
| + | & + & 0 \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| | | |
| =====Computation of d''f''<sub>9</sub>===== | | =====Computation of d''f''<sub>9</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F9.4} ~~ \text{Computation of}~ \mathrm{d}f_{9}\!</math> |
| + | | |
| + | <math>\begin{array}{c*{8}{l}} |
| + | \mathrm{D}f_{9} |
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \!\cdot\! \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | \\[6pt] |
| + | \Downarrow |
| + | \\[6pt] |
| + | \mathrm{d}f_{9} |
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \!\cdot\! \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| | | |
| =====Computation of r''f''<sub>9</sub>===== | | =====Computation of r''f''<sub>9</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F9.5} ~~ \text{Computation of}~ \mathrm{r}f_{9}\!</math> |
| + | | |
| + | <math>\begin{array}{c*{8}{l}} |
| + | \mathrm{r}f_{9} |
| + | & = & \mathrm{D}f_{9} |
| + | & + & \mathrm{d}f_{9} |
| + | \\[20pt] |
| + | \mathrm{D}f_{9} |
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | \\[6pt] |
| + | \mathrm{d}f_{9} |
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | \\[20pt] |
| + | \mathrm{r}f_{9} |
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot 0 |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot 0 |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot 0 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| | | |
| =====Computation Summary for Equality===== | | =====Computation Summary for Equality===== |
Line 10,695: |
Line 10,901: |
| <math>\begin{array}{c*{8}{l}} | | <math>\begin{array}{c*{8}{l}} |
| \boldsymbol\varepsilon f_{9} | | \boldsymbol\varepsilon f_{9} |
− | & = & u \!\cdot\! v \cdot 1 | + | & = & uv \cdot 1 |
| & + & u \texttt{(} v \texttt{)} \cdot 0 | | & + & u \texttt{(} v \texttt{)} \cdot 0 |
| & + & \texttt{(} u \texttt{)} v \cdot 0 | | & + & \texttt{(} u \texttt{)} v \cdot 0 |
Line 10,701: |
Line 10,907: |
| \\[6pt] | | \\[6pt] |
| \mathrm{E}f_{9} | | \mathrm{E}f_{9} |
− | & = & u \!\cdot\! v \cdot \texttt{((} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{))} | + | & = & uv \cdot \texttt{((} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{))} |
| & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | | & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
Line 10,707: |
Line 10,913: |
| \\[6pt] | | \\[6pt] |
| \mathrm{D}f_{9} | | \mathrm{D}f_{9} |
− | & = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | + | & = & uv \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | | & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
Line 10,713: |
Line 10,919: |
| \\[6pt] | | \\[6pt] |
| \mathrm{d}f_{9} | | \mathrm{d}f_{9} |
− | & = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | + | & = & uv \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | | & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
Line 10,719: |
Line 10,925: |
| \\[6pt] | | \\[6pt] |
| \mathrm{r}f_{9} | | \mathrm{r}f_{9} |
− | & = & u \!\cdot\! v \cdot 0 | + | & = & uv \cdot 0 |
| & + & u \texttt{(} v \texttt{)} \cdot 0 | | & + & u \texttt{(} v \texttt{)} \cdot 0 |
| & + & \texttt{(} u \texttt{)} v \cdot 0 | | & + & \texttt{(} u \texttt{)} v \cdot 0 |