Line 5,478: |
Line 5,478: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:70%" | + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" |
− | |+ '''Table 54. Cast of Characters: Expansive Subtypes of Objects and Operators''' | + | |+ style="height:30px" | <math>\text{Table 54.} ~~ \text{Cast of Characters : Expansive Subtypes of Objects and Operators}\!</math> |
− | |- style="background:ghostwhite" | + | |- style="height:40px; background:ghostwhite" |
− | ! Item | + | | align="center" | <math>\text{Symbol}\!</math> |
− | ! Notation | + | | align="center" | <math>\text{Notation}\!</math> |
− | ! Description | + | | align="center" | <math>\text{Description}\!</math> |
− | ! Type | + | | align="center" | <math>\text{Type}\!</math> |
| |- | | |- |
− | | ''U''<sup> •</sup> | + | | align="center" | <math>U^\bullet\!</math> |
− | | = [''u'', ''v''] | + | | <math>= [u, v]\!</math> |
− | | Source Universe | + | | <math>\text{Source universe}\!</math> |
− | | ['''B'''<sup>2</sup>] | + | | <math>[\mathbb{B}^2]\!</math> |
| |- | | |- |
− | | ''X''<sup> •</sup> | + | | align="center" | <math>X^\bullet~\!</math> |
− | | = [''x''] | + | | <math>= [x]\!</math> |
− | | Target Universe | + | | <math>\text{Target universe}\!</math> |
− | | ['''B'''<sup>1</sup>] | + | | <math>[\mathbb{B}^1]~\!</math> |
| |- | | |- |
− | | E''U''<sup> •</sup> | + | | align="center" | <math>\mathrm{E}U^\bullet\!</math> |
− | | = [''u'', ''v'', d''u'', d''v''] | + | | <math>= [u, v, \mathrm{d}u, \mathrm{d}v]\!</math> |
− | | Extended Source Universe | + | | <math>\text{Extended source universe}\!</math> |
− | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] | + | | <math>[\mathbb{B}^2 \times \mathbb{D}^2]\!</math> |
| |- | | |- |
− | | E''X''<sup> •</sup> | + | | align="center" | <math>\mathrm{E}X^\bullet\!</math> |
− | | = [''x'', d''x''] | + | | <math>= [x, \mathrm{d}x]~\!</math> |
− | | Extended Target Universe | + | | <math>\text{Extended target universe}\!</math> |
− | | ['''B'''<sup>1</sup> × '''D'''<sup>1</sup>] | + | | <math>[\mathbb{B}^1 \times \mathbb{D}^1]\!</math> |
| |- | | |- |
− | | ''J'' | + | | align="center" | <math>J\!</math> |
− | | ''J'' : ''U'' → '''B''' | + | | <math>J : U \to \mathbb{B}\!</math> |
− | | Proposition | + | | <math>\text{Proposition}\!</math> |
− | | ('''B'''<sup>2</sup> → '''B''') ∈ ['''B'''<sup>2</sup>] | + | | <math>(\mathbb{B}^2 \to \mathbb{B}) \in [\mathbb{B}^2]\!</math> |
| |- | | |- |
− | | ''J'' | + | | align="center" | <math>J\!</math> |
− | | ''J'' : ''U''<sup> •</sup> → ''X''<sup> •</sup> | + | | <math>J : U^\bullet \to X^\bullet\!</math> |
− | | Transformation, or Mapping | + | | <math>\text{Transformation or Map}\!</math> |
− | | ['''B'''<sup>2</sup>] → ['''B'''<sup>1</sup>] | + | | <math>[\mathbb{B}^2] \to [\mathbb{B}^1]\!</math> |
| |- | | |- |
− | | valign="top" | | + | | align="center" | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | + | <math>\begin{matrix} |
− | | W
| + | \boldsymbol\varepsilon |
− | |}
| + | \\ |
− | | valign="top" |
| + | \eta |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | + | \\ |
− | | W :
| + | \mathrm{E} |
− | |-
| + | \\ |
− | | ''U''<sup> •</sup> → E''U''<sup> •</sup> ,
| + | \mathrm{D} |
− | |-
| + | \\ |
− | | ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
| + | \mathrm{d} |
− | |-
| + | \end{matrix}</math> |
− | | (''U''<sup> •</sup> → ''X''<sup> •</sup>)
| + | | |
− | |-
| + | <math>\begin{array}{l} |
− | | →
| + | \mathrm{W} : U^\bullet \to \mathrm{E}U^\bullet, |
− | |-
| + | \\ |
− | | (E''U''<sup> •</sup> → E''X''<sup> •</sup>) ,
| + | \mathrm{W} : X^\bullet \to \mathrm{E}X^\bullet, |
− | |-
| + | \\\\ |
− | | for each W in the set:
| + | \mathrm{W} : (U^\bullet \to X^\bullet) \to (\mathrm{E}U^\bullet \to \mathrm{E}X^\bullet) |
− | |-
| + | \\ |
− | | {<math>\epsilon</math>, <math>\eta</math>, E, D, d}
| + | \text{for}~ \mathrm{W} = \boldsymbol\varepsilon, \eta, \mathrm{E}, \mathrm{D}, \mathrm{d} |
− | |}
| + | \end{array}</math> |
− | | valign="top" |
| + | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | + | <math>\begin{array}{ll} |
− | | Operator
| + | \text{Tacit extension operator} & \boldsymbol\varepsilon |
− | |}
| + | \\ |
− | | valign="top" |
| + | \text{Trope extension operator} & \eta |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100" | + | \\ |
− | |
| + | \text{Enlargement operator} & \mathrm{E} |
− | |- | + | \\ |
− | | ['''B'''<sup>2</sup>] → ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] ,
| + | \text{Difference operator} & \mathrm{D} |
− | |-
| + | \\ |
− | | ['''B'''<sup>1</sup>] → ['''B'''<sup>1</sup> × '''D'''<sup>1</sup>] ,
| + | \text{Differential operator} & \mathrm{d} |
− | |-
| + | \end{array}</math> |
− | | (['''B'''<sup>2</sup>] → ['''B'''<sup>1</sup>])
| + | | |
− | |-
| + | <math>\begin{array}{l} |
− | | →
| + | {[\mathbb{B}^2] \to [\mathbb{B}^2 \times \mathbb{D}^2]}, |
− | |-
| + | \\ |
− | | (['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B'''<sup>1</sup> × '''D'''<sup>1</sup>])
| + | {[\mathbb{B}^1] \to [\mathbb{B}^1 \times \mathbb{D}^1]}, |
− | |-
| + | \\\\ |
− | |
| + | ([\mathbb{B}^2] \to [\mathbb{B}^1]) \to |
− | |-
| + | \\ |
− | |
| + | ([\mathbb{B}^2 \times \mathbb{D}^2] \to [\mathbb{B}^1 \times \mathbb{D}^1]) |
− | |}
| + | \end{array}</math> |
| |- | | |- |
| + | | align="center" | |
| + | <math>\begin{matrix} |
| + | \mathsf{e} |
| + | \\ |
| + | \mathsf{E} |
| + | \\ |
| + | \mathsf{D} |
| + | \\ |
| + | \mathsf{T} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{array}{l} |
| + | \mathsf{W} : U^\bullet \to \mathsf{T}U^\bullet = \mathrm{E}U^\bullet, |
| + | \\ |
| + | \mathsf{W} : X^\bullet \to \mathsf{T}X^\bullet = \mathrm{E}X^\bullet, |
| + | \\\\ |
| + | \mathsf{W} : (U^\bullet \to X^\bullet) \to (\mathsf{T}U^\bullet \to \mathsf{T}X^\bullet) |
| + | \\ |
| + | \text{for}~ \mathsf{W} = \mathsf{e}, \mathsf{E}, \mathsf{D}, \mathsf{T} |
| + | \end{array}</math> |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
| + | <math>\begin{array}{llll} |
− | | <math>\epsilon</math>
| + | \text{Radius operator} & \mathsf{e} & = & (\boldsymbol\varepsilon, \eta) |
− | |-
| + | \\ |
− | | <math>\eta</math>
| + | \text{Secant operator} & \mathsf{E} & = & (\boldsymbol\varepsilon, \mathrm{E}) |
− | |-
| + | \\ |
− | | E
| + | \text{Chord operator} & \mathsf{D} & = & (\boldsymbol\varepsilon, \mathrm{D}) |
− | |-
| + | \\ |
− | | D
| + | \text{Tangent functor} & \mathsf{T} & = & (\boldsymbol\varepsilon, \mathrm{d}) |
− | |-
| + | \end{array}</math> |
− | | d
| |
− | |}
| |
− | | valign="top" |
| |
− | | colspan="2" |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:60%" | |
− | | Tacit Extension Operator || <math>\epsilon</math>
| |
− | |-
| |
− | | Trope Extension Operator || <math>\eta</math>
| |
− | |-
| |
− | | Enlargement Operator || E
| |
− | |-
| |
− | | Difference Operator || D
| |
− | |-
| |
− | | Differential Operator || d
| |
− | |}
| |
− | |-
| |
− | | valign="top" |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | |
− | | <font face=georgia>'''W'''</font>
| |
− | |}
| |
− | | valign="top" |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
| |
− | | <font face=georgia>'''W'''</font> :
| |
− | |-
| |
− | | ''U''<sup> •</sup> → <font face=georgia>'''T'''</font>''U''<sup> •</sup> = E''U''<sup> •</sup> ,
| |
− | |-
| |
− | | ''X''<sup> •</sup> → <font face=georgia>'''T'''</font>''X''<sup> •</sup> = E''X''<sup> •</sup> ,
| |
− | |-
| |
− | | (''U''<sup> •</sup> → ''X''<sup> •</sup>)
| |
− | |-
| |
− | | →
| |
− | |-
| |
− | | (<font face=georgia>'''T'''</font>''U''<sup> •</sup> → <font face=georgia>'''T'''</font>''X''<sup> •</sup>) ,
| |
− | |-
| |
− | | for each <font face=georgia>'''W'''</font> in the set:
| |
− | |-
| |
− | | {<font face=georgia>'''e'''</font>, <font face=georgia>'''E'''</font>, <font face=georgia>'''D'''</font>, <font face=georgia>'''T'''</font>}
| |
− | |}
| |
− | | valign="top" |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | |
− | | Operator
| |
− | |}
| |
− | | valign="top" |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100" | |
− | |
| |
− | |-
| |
− | | ['''B'''<sup>2</sup>] → ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] ,
| |
− | |-
| |
− | | ['''B'''<sup>1</sup>] → ['''B'''<sup>1</sup> × '''D'''<sup>1</sup>] ,
| |
− | |-
| |
− | | (['''B'''<sup>2</sup>] → ['''B'''<sup>1</sup>])
| |
− | |-
| |
− | | →
| |
− | |-
| |
− | | (['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B'''<sup>1</sup> × '''D'''<sup>1</sup>])
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |}
| |
− | |-
| |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
| + | <math>\begin{array}{l} |
− | | <font face=georgia>'''e'''</font>
| + | {[\mathbb{B}^2] \to [\mathbb{B}^2 \times \mathbb{D}^2]}, |
− | |-
| + | \\ |
− | | <font face=georgia>'''E'''</font>
| + | {[\mathbb{B}^1] \to [\mathbb{B}^1 \times \mathbb{D}^1]}, |
− | |-
| + | \\\\ |
− | | <font face=georgia>'''D'''</font>
| + | ([\mathbb{B}^2] \to [\mathbb{B}^1]) \to |
− | |-
| + | \\ |
− | | <font face=georgia>'''T'''</font>
| + | ([\mathbb{B}^2 \times \mathbb{D}^2] \to [\mathbb{B}^1 \times \mathbb{D}^1]) |
− | |}
| + | \end{array}</math> |
− | | valign="top" |
| |
− | | colspan="2" |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:60%" | |
− | | Radius Operator || <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>›
| |
− | |-
| |
− | | Secant Operator || <font face=georgia>'''E'''</font> = ‹<math>\epsilon</math>, E›
| |
− | |-
| |
− | | Chord Operator || <font face=georgia>'''D'''</font> = ‹<math>\epsilon</math>, D›
| |
− | |-
| |
− | | Tangent Functor || <font face=georgia>'''T'''</font> = ‹<math>\epsilon</math>, d›
| |
− | |}
| |
| |} | | |} |
| | | |
Line 5,661: |
Line 5,609: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:70%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:90%" |
− | |+ '''Table 55. Synopsis of Terminology: Restrictive and Alternative Subtypes''' | + | |+ '''Table 55. Synopsis of Terminology : Restrictive and Alternative Subtypes''' |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
| ! | | ! |