Changes

Line 9,336: Line 9,336:  
# The triple <math>(x, y, z)\!</math> in <math>\mathbb{B}^3\!</math> belongs to <math>L_0\!</math> if and only if <math>x + y + z = 0.\!</math>  Thus, <math>L_0\!</math> is the set of even-parity bit vectors, with <math>x + y = z.\!</math>
 
# The triple <math>(x, y, z)\!</math> in <math>\mathbb{B}^3\!</math> belongs to <math>L_0\!</math> if and only if <math>x + y + z = 0.\!</math>  Thus, <math>L_0\!</math> is the set of even-parity bit vectors, with <math>x + y = z.\!</math>
 
# The triple <math>(x, y, z)\!</math> in <math>\mathbb{B}^3\!</math> belongs to <math>L_1\!</math> if and only if <math>x + y + z = 1.\!</math>  Thus, <math>L_1\!</math> is the set of odd-parity bit vectors, with <math>x + y = z + 1.\!</math>
 
# The triple <math>(x, y, z)\!</math> in <math>\mathbb{B}^3\!</math> belongs to <math>L_1\!</math> if and only if <math>x + y + z = 1.\!</math>  Thus, <math>L_1\!</math> is the set of odd-parity bit vectors, with <math>x + y = z + 1.\!</math>
 +
 +
The corresponding projections of <math>\operatorname{Proj}^{(2)} L_0\!</math> and <math>\operatorname{Proj}^{(2)} L_1\!</math> are identical.  In fact, all six projections, taken at the level of logical abstraction, constitute precisely the same dyadic relation, isomorphic to the whole of <math>\mathbb{B} \times \mathbb{B}\!</math> and expressed by the universal constant proposition <math>1 : \mathbb{B} \times \mathbb{B} \to \mathbb{B}.\!</math>  In summary:
    
<pre>
 
<pre>
The corresponding projections of Proj (R0) and Proj (R1) are identical.  In fact, all six projections, taken at the level of logical abstraction, constitute precisely the same dyadic relation, isomorphic to the whole of BxB and expressed by the universal constant proposition 1 : BxB  > B.  In summary:
  −
   
R012  =  R112  =  112  =  B2,
 
R012  =  R112  =  112  =  B2,
 
R013  =  R113  =  113  =  B2,
 
R013  =  R113  =  113  =  B2,
12,080

edits