Changes

Line 175: Line 175:  
In a similar fashion, it is possible to define the numerical incidence properties <math>^{\backprime\backprime}(< c)\text{-regular at}~ j \, ^{\prime\prime},</math> <math>^{\backprime\backprime}(> c)\text{-regular at}~ j \, ^{\prime\prime},</math> and so on.  For ease of reference,  a few of these definitions are recorded below.
 
In a similar fashion, it is possible to define the numerical incidence properties <math>^{\backprime\backprime}(< c)\text{-regular at}~ j \, ^{\prime\prime},</math> <math>^{\backprime\backprime}(> c)\text{-regular at}~ j \, ^{\prime\prime},</math> and so on.  For ease of reference,  a few of these definitions are recorded below.
   −
{| align="center" cellspacing="6" width="90%"
+
{| align="center" cellspacing="8" width="90%"
 
|
 
|
 
<math>\begin{array}{lll}
 
<math>\begin{array}{lll}
Line 204: Line 204:  
Among the variety of conceivable regularities affecting 2-adic relations, we pay special attention to the <math>c\!</math>-regularity conditions where <math>c\!</math> is equal to 1.
 
Among the variety of conceivable regularities affecting 2-adic relations, we pay special attention to the <math>c\!</math>-regularity conditions where <math>c\!</math> is equal to 1.
   −
Let <math>P \subseteq X \times Y</math> be an arbitrary 2-adic relation.  The following properties of <math>~P~</math> can be defined:
+
Let <math>L \subseteq X \times Y\!</math> be an arbitrary 2-adic relation.  The following properties of <math>L\!</math> can be defined:
   −
{| align="center" cellspacing="6" width="90%"
+
{| align="center" cellspacing="8" width="90%"
 
|
 
|
 
<math>\begin{array}{lll}
 
<math>\begin{array}{lll}
P ~\text{is total at}~ X
+
L ~\text{is total at}~ X
 
& \iff &
 
& \iff &
P ~\text{is}~ (\ge 1)\text{-regular}~ \text{at}~ X.
+
L ~\text{is}~ (\ge 1)\text{-regular}~ \text{at}~ X.
 
\\[6pt]
 
\\[6pt]
P ~\text{is total at}~ Y
+
L ~\text{is total at}~ Y
 
& \iff &
 
& \iff &
P ~\text{is}~ (\ge 1)\text{-regular}~ \text{at}~ Y.
+
L ~\text{is}~ (\ge 1)\text{-regular}~ \text{at}~ Y.
 
\\[6pt]
 
\\[6pt]
P ~\text{is tubular at}~ X
+
L ~\text{is tubular at}~ X
 
& \iff &
 
& \iff &
P ~\text{is}~ (\le 1)\text{-regular}~ \text{at}~ X.
+
L ~\text{is}~ (\le 1)\text{-regular}~ \text{at}~ X.
 
\\[6pt]
 
\\[6pt]
P ~\text{is tubular at}~ Y
+
L ~\text{is tubular at}~ Y
 
& \iff &
 
& \iff &
P ~\text{is}~ (\le 1)\text{-regular}~ \text{at}~ Y.
+
L ~\text{is}~ (\le 1)\text{-regular}~ \text{at}~ Y.
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
12,080

edits