Changes

Line 1,122: Line 1,122:  
<br>
 
<br>
   −
<pre>
+
{| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
Table 33.3 Regular Representation of the Group V4
+
|+ <math>\text{Table 33.3}~~\text{Regular Representation of the Group}~V_4</math>
Element Function as Set of Ordered Pairs of Symbols
+
|- style="height:50px"
1   { <"1", "1">, <"r", "r">, <"s", "s">, <"t", "t"> }
+
| style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math>
r   { <"1", "r">, <"r", "1">, <"s", "t">, <"t", "s"> }
+
| colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Symbols}\!</math>
s   { <"1", "s">, <"r", "t">, <"s", "1">, <"t", "r"> }
+
|- style="height:50px"
t   { <"1", "t">, <"r", "s">, <"s", "r">, <"t", "1"> }
+
| width="20%" style="border-right:1px solid black" | <math>\operatorname{e}</math>
</pre>
+
| width="4%" | <math>\{\!</math>
 +
| width="16%" | <math>({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),</math>
 +
| width="20%" | <math>({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),</math>
 +
| width="20%" | <math>({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),</math>
 +
| width="16%" | <math>({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime})</math>
 +
| width="4%" | <math>\}\!</math>
 +
|- style="height:50px"
 +
| style="border-right:1px solid black" | <math>\operatorname{f}</math>
 +
| <math>\{\!</math>
 +
| <math>({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),</math>
 +
| <math>({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),</math>
 +
| <math>({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),</math>
 +
| <math>({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime})</math>
 +
| <math>\}\!</math>
 +
|- style="height:50px"
 +
| style="border-right:1px solid black" | <math>\operatorname{g}</math>
 +
| <math>\{\!</math>
 +
| <math>({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),</math>
 +
| <math>({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),</math>
 +
| <math>({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),</math>
 +
| <math>({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime})</math>
 +
| <math>\}\!</math>
 +
|- style="height:50px"
 +
| style="border-right:1px solid black" | <math>\operatorname{h}</math>
 +
| <math>\{\!</math>
 +
| <math>({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),</math>
 +
| <math>({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),</math>
 +
| <math>({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),</math>
 +
| <math>({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime})</math>
 +
| <math>\}\!</math>
 +
|}
 +
 
 +
<br>
    
Tables&nbsp;34.1 and 35.1 show two forms of operation table for the group <math>Z_4,\!</math> presenting the group, for the sake of contrast, in multiplicative and additive forms, respectively.  Tables&nbsp;34.2 and 35.2 give the corresponding forms of the regular representation.
 
Tables&nbsp;34.1 and 35.1 show two forms of operation table for the group <math>Z_4,\!</math> presenting the group, for the sake of contrast, in multiplicative and additive forms, respectively.  Tables&nbsp;34.2 and 35.2 give the corresponding forms of the regular representation.
12,089

edits