Line 1,122: |
Line 1,122: |
| <br> | | <br> |
| | | |
− | <pre> | + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
− | Table 33.3 Regular Representation of the Group V4 | + | |+ <math>\text{Table 33.3}~~\text{Regular Representation of the Group}~V_4</math> |
− | Element Function as Set of Ordered Pairs of Symbols
| + | |- style="height:50px" |
− | 1 { <"1", "1">, <"r", "r">, <"s", "s">, <"t", "t"> }
| + | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math> |
− | r { <"1", "r">, <"r", "1">, <"s", "t">, <"t", "s"> }
| + | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Symbols}\!</math> |
− | s { <"1", "s">, <"r", "t">, <"s", "1">, <"t", "r"> }
| + | |- style="height:50px" |
− | t { <"1", "t">, <"r", "s">, <"s", "r">, <"t", "1"> }
| + | | width="20%" style="border-right:1px solid black" | <math>\operatorname{e}</math> |
− | </pre> | + | | width="4%" | <math>\{\!</math> |
| + | | width="16%" | <math>({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),</math> |
| + | | width="20%" | <math>({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),</math> |
| + | | width="20%" | <math>({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),</math> |
| + | | width="16%" | <math>({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime})</math> |
| + | | width="4%" | <math>\}\!</math> |
| + | |- style="height:50px" |
| + | | style="border-right:1px solid black" | <math>\operatorname{f}</math> |
| + | | <math>\{\!</math> |
| + | | <math>({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),</math> |
| + | | <math>({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),</math> |
| + | | <math>({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),</math> |
| + | | <math>({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime})</math> |
| + | | <math>\}\!</math> |
| + | |- style="height:50px" |
| + | | style="border-right:1px solid black" | <math>\operatorname{g}</math> |
| + | | <math>\{\!</math> |
| + | | <math>({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),</math> |
| + | | <math>({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),</math> |
| + | | <math>({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),</math> |
| + | | <math>({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime})</math> |
| + | | <math>\}\!</math> |
| + | |- style="height:50px" |
| + | | style="border-right:1px solid black" | <math>\operatorname{h}</math> |
| + | | <math>\{\!</math> |
| + | | <math>({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),</math> |
| + | | <math>({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),</math> |
| + | | <math>({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),</math> |
| + | | <math>({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime})</math> |
| + | | <math>\}\!</math> |
| + | |} |
| + | |
| + | <br> |
| | | |
| Tables 34.1 and 35.1 show two forms of operation table for the group <math>Z_4,\!</math> presenting the group, for the sake of contrast, in multiplicative and additive forms, respectively. Tables 34.2 and 35.2 give the corresponding forms of the regular representation. | | Tables 34.1 and 35.1 show two forms of operation table for the group <math>Z_4,\!</math> presenting the group, for the sake of contrast, in multiplicative and additive forms, respectively. Tables 34.2 and 35.2 give the corresponding forms of the regular representation. |