Line 1: |
Line 1: |
| <font size="3">☞</font> This page belongs to resource collections on [[Logic Live|Logic]] and [[Inquiry Live|Inquiry]]. | | <font size="3">☞</font> This page belongs to resource collections on [[Logic Live|Logic]] and [[Inquiry Live|Inquiry]]. |
| + | |
| + | A '''minimal negation operator''' (Mno) is a logical connective that says “just one false” of its logical arguments. |
| + | |
| + | If the list of arguments is empty, as expressed in the form Mno(), then it cannot be true that exactly one of the arguments is false, so Mno() = False. |
| + | |
| + | If p is the only argument, then Mno(p) says that p is false, so Mno(p) = Not(p). |
| + | |
| + | If p and q are the only two arguments, then Mno(p, q) says that exactly one of p, q is false, so Mno(p, q) says the same thing as p ≠ q. |
| + | |
| + | The venn diagram for Mno(p, q, r) is shown in Figure 1. |
| + | |
| + | {| align="center" cellpadding="8" style="text-align:center" |
| + | | |
| + | <p>[[Image:Venn Diagram (P,Q,R).jpg|500px]]</p> |
| + | <p><math>\text{Figure 1.}~~\texttt{(p, q, r)}</math></p> |
| + | |} |
| + | |
| + | The center cell is the region where all three arguments p, q, r hold true, so Mno(p, q, r) holds true in just the three neighboring cells. In other words, Mno(p, q, r) = ¬p q r ∨ p ¬q r ∨ p q ¬r. |
| + | |
| + | ==Initial definition== |
| | | |
| The '''minimal negation operator''' <math>\nu\!</math> is a [[multigrade operator]] <math>(\nu_k)_{k \in \mathbb{N}}</math> where each <math>\nu_k\!</math> is a <math>k\!</math>-ary [[boolean function]] defined in such a way that <math>\nu_k (x_1, \ldots , x_k) = 1</math> in just those cases where exactly one of the arguments <math>x_j\!</math> is <math>0.\!</math> | | The '''minimal negation operator''' <math>\nu\!</math> is a [[multigrade operator]] <math>(\nu_k)_{k \in \mathbb{N}}</math> where each <math>\nu_k\!</math> is a <math>k\!</math>-ary [[boolean function]] defined in such a way that <math>\nu_k (x_1, \ldots , x_k) = 1</math> in just those cases where exactly one of the arguments <math>x_j\!</math> is <math>0.\!</math> |
Line 32: |
Line 52: |
| |} | | |} |
| | | |
− | ==Definition== | + | ==Formal definition== |
| | | |
| To express the general case of <math>\nu_k\!</math> in terms of familiar operations, it helps to introduce an intermediary concept: | | To express the general case of <math>\nu_k\!</math> in terms of familiar operations, it helps to introduce an intermediary concept: |
Line 78: |
Line 98: |
| ==Truth tables== | | ==Truth tables== |
| | | |
− | Table 1 is a [[truth table]] for the sixteen boolean functions of type <math>f : \mathbb{B}^3 \to \mathbb{B}</math> whose fibers of 1 are either the boundaries of points in <math>\mathbb{B}^3</math> or the complements of those boundaries. | + | Table 2 is a [[truth table]] for the sixteen boolean functions of type <math>f : \mathbb{B}^3 \to \mathbb{B}</math> whose fibers of 1 are either the boundaries of points in <math>\mathbb{B}^3</math> or the complements of those boundaries. |
| | | |
| <br> | | <br> |
| | | |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
− | |+ <math>\text{Table 1.}~~\text{Logical Boundaries and Their Complements}</math> | + | |+ <math>\text{Table 2.}~~\text{Logical Boundaries and Their Complements}</math> |
| |- style="background:#f0f0ff" | | |- style="background:#f0f0ff" |
| | <math>\mathcal{L}_1</math> | | | <math>\mathcal{L}_1</math> |
Line 285: |
Line 305: |
| | | | | |
| <p>[[Image:Venn Diagram (P,Q,R).jpg|500px]]</p> | | <p>[[Image:Venn Diagram (P,Q,R).jpg|500px]]</p> |
− | <p><math>\text{Figure 2.}~~\texttt{(p, q, r)}</math></p> | + | <p><math>\text{Figure 3.}~~\texttt{(p, q, r)}</math></p> |
| |} | | |} |
| | | |
Line 293: |
Line 313: |
| | | | | |
| <p>[[Image:Venn Diagram ((P),(Q),(R)).jpg|500px]]</p> | | <p>[[Image:Venn Diagram ((P),(Q),(R)).jpg|500px]]</p> |
− | <p><math>\text{Figure 3.}~~\texttt{((p),(q),(r))}</math></p> | + | <p><math>\text{Figure 4.}~~\texttt{((p),(q),(r))}</math></p> |
| |} | | |} |
| | | |