| Line 667: |
Line 667: |
| | </pre> | | </pre> |
| | | | |
| − | =====1.3.12.2. Derived Equivalence Relations===== | + | =====1.3.12.2. Derived Equivalence Relations <big>✔</big>===== |
| − | | |
| − | The uses of the equal sign for denoting equations or equivalences are recalled and extended in the following ways:
| |
| − | | |
| − | 1. If E is an arbitrary equivalence relation,
| |
| − | | |
| − | then the equation "x =E y" means that <x, y> C E.
| |
| − | | |
| − | 2. If R is a sign relation such that RSI is a SER on S = I,
| |
| − | | |
| − | then the semiotic equation "x =R y" means that <x, y> C RSI.
| |
| − | | |
| − | 3. If R is a sign relation such that F is its DER on S = I,
| |
| − | | |
| − | then the denotative equation "x =R y" means that <x, y> C F,
| |
| − | | |
| − | in other words, that Den(R, x) = Den(R, y).
| |
| − | | |
| − | The uses of square brackets for denoting equivalence classes are recalled and extended in the following ways:
| |
| − | | |
| − | 1. If E is an arbitrary equivalence relation,
| |
| − | | |
| − | then "[x]E" denotes the equivalence class of x under E.
| |
| − | | |
| − | 2. If R is a sign relation such that Con(R) is a SER on S = I,
| |
| − | | |
| − | then "[x]R" denotes the SEC of x under Con(R).
| |
| − | | |
| − | 3. If R is a sign relation such that Der(R) is a DER on S = I,
| |
| − | | |
| − | then "[x]R" denotes the DEC of x under Der(R).
| |
| − | | |
| − | By applying the form of Fact 1 to the special case where X = Den(R, x) and Y = Den(R, y), one obtains the following facts.
| |
| − | | |
| − | <pre>
| |
| − | Fact 2.1
| |
| − | | |
| − | If R c OxSxI,
| |
| − | | |
| − | then the following are identical subsets of SxI:
| |
| − | | |
| − | F2.1a. DerR :D13a
| |
| − | | |
| − | ::
| |
| − | | |
| − | F2.1b. Der(R) :D13b
| |
| − | | |
| − | ::
| |
| − | | |
| − | F2.1c. {<x, y> C SxI :
| |
| − | | |
| − | Den(R, x) = Den(R, y)
| |
| − | | |
| − | } :D13c
| |
| − | | |
| − | :R9a
| |
| − | | |
| − | ::
| |
| − | | |
| − | F2.1d. {<x, y> C SxI :
| |
| − | | |
| − | {Den(R, x)} = {Den(R, y)}
| |
| − | | |
| − | } :R9b
| |
| − | | |
| − | ::
| |
| − | | |
| − | F2.1e. {<x, y> C SxI :
| |
| − | | |
| − | for all o C O
| |
| − | | |
| − | {Den(R, x)}(o) = {Den(R, y)}(o)
| |
| − | | |
| − | } :R9c
| |
| − | | |
| − | ::
| |
| − | | |
| − | F2.1f. {<x, y> C SxI :
| |
| − | | |
| − | Conj(o C O)
| |
| − | | |
| − | {Den(R, x)}(o) = {Den(R, y)}(o)
| |
| − | | |
| − | } :R9d
| |
| − | | |
| − | ::
| |
| − | | |
| − | F2.1g. {<x, y> C SxI :
| |
| − | | |
| − | Conj(o C O)
| |
| − | | |
| − | (( {Den(R, x)}(o) , {Den(R, y)}(o) ))
| |
| − | | |
| − | } :R9e
| |
| − | | |
| − | ::
| |
| − | | |
| − | F2.1h. {<x, y> C SxI :
| |
| − | | |
| − | Conj(o C O)
| |
| − | | |
| − | (( {Den(R, x)} , {Den(R, y)} ))$(o)
| |
| − | | |
| − | } :R9f
| |
| − | | |
| − | :D12e
| |
| − | | |
| − | ::
| |
| − | | |
| − | F2.1i. {<x, y> C SxI :
| |
| − | | |
| − | Conj(o C O)
| |
| − | | |
| − | (( {ROS.x} , {ROS.y} ))$(o)
| |
| − | | |
| − | } :D12a
| |
| − | </pre> | |
| − | | |
| − | <pre>
| |
| − | Fact 2.2
| |
| − | | |
| − | If R c OxSxI,
| |
| − | | |
| − | then the following are equivalent:
| |
| − | | |
| − | F2.2a. DerR = {<x, y> C SxI :
| |
| − | | |
| − | Conj(o C O)
| |
| − | | |
| − | {Den(R, x)}(o) =
| |
| − | | |
| − | {Den(R, y)}(o)
| |
| − | | |
| − | } :R11a
| |
| − | ::
| |
| − | | |
| − | F2.2b. {DerR} = { {<x, y> C SxI :
| |
| − | | |
| − | Conj(o C O)
| |
| − | | |
| − | {Den(R, x)}(o) =
| |
| − | | |
| − | {Den(R, y)}(o)
| |
| − | | |
| − | }
| |
| − | | |
| − | } :R11b
| |
| − | | |
| − | ::
| |
| − | | |
| − | F2.2c. {DerR} c SxIxB
| |
| − | | |
| − | :
| |
| − | | |
| − | {DerR} = {<x, y, v> C SxIxB :
| |
| − | | |
| − | v =
| |
| − | | |
| − | [ Conj(o C O)
| |
| − | | |
| − | {Den(R, x)}(o) =
| |
| − | | |
| − | {Den(R, y)}(o)
| |
| − | | |
| − | ]
| |
| − | | |
| − | } :R11c
| |
| − | | |
| − | ::
| |
| − | | |
| − | F2.2d. {DerR} = {<x, y, v> C SxIxB :
| |
| − | | |
| − | v =
| |
| − | | |
| − | Conj(o C O)
| |
| − | | |
| − | [ {Den(R, x)}(o) =
| |
| − | | |
| − | {Den(R, y)}(o)
| |
| − | | |
| − | ]
| |
| − | | |
| − | } :Log
| |
| − | | |
| − | F2.2e. {DerR} = {<x, y, v> C SxIxB :
| |
| − | | |
| − | v =
| |
| − | | |
| − | Conj(o C O)
| |
| − | | |
| − | (( {Den(R, x)}(o),
| |
| − | | |
| − | {Den(R, y)}(o)
| |
| − | | |
| − | ))
| |
| − | | |
| − | } :Log
| |
| − | | |
| − | F2.2f. {DerR} = {<x, y, v> C SxIxB :
| |
| − | | |
| − | v =
| |
| − | | |
| − | Conj(o C O)
| |
| − | | |
| − | (( {Den(R, x)},
| |
| − | | |
| − | {Den(R, y)}
| |
| − | | |
| − | ))$(o)
| |
| − | | |
| − | } :$
| |
| − | </pre>
| |
| − | | |
| − | <pre>
| |
| − | Fact 2.3
| |
| − | | |
| − | If R c OxSxI,
| |
| − | | |
| − | then the following are equivalent:
| |
| − | | |
| − | F2.3a. DerR = {<x, y> C SxI :
| |
| − | | |
| − | Conj(o C O)
| |
| − | | |
| − | {Den(R, x)}(o) =
| |
| − | | |
| − | {Den(R, y)}(o)
| |
| − | | |
| − | } :R11a
| |
| − | | |
| − | ::
| |
| − | | |
| − | F2.3b. {DerR} : SxI -> B
| |
| − | | |
| − | :
| |
| − | | |
| − | {DerR}(x, y) = [ Conj(o C O)
| |
| − | | |
| − | {Den(R, x)}(o) =
| |
| − | | |
| − | {Den(R, y)}(o)
| |
| − | | |
| − | ] :R11d
| |
| − | | |
| − | ::
| |
| − | | |
| − | F2.3c. {DerR}(x, y) = Conj(o C O)
| |
| − | | |
| − | [ {Den(R, x)}(o) =
| |
| − | | |
| − | {Den(R, y)}(o)
| |
| − | | |
| − | ] :Log
| |
| − | | |
| − | ::
| |
| − | | |
| − | F2.3d. {DerR}(x, y) = Conj(o C O)
| |
| − | | |
| − | [ {DenR}(o, x) =
| |
| − | | |
| − | {DenR}(o, y)
| |
| − | | |
| − | ] :Def
| |
| − | | |
| − | ::
| |
| − | | |
| − | F2.3e. {DerR}(x, y) = Conj(o C O)
| |
| − | | |
| − | (( {DenR}(o, x),
| |
| − | | |
| − | {DenR}(o, y)
| |
| − | | |
| − | )) :Log
| |
| − | | |
| − | :D10b
| |
| − | | |
| − | ::
| |
| − | | |
| − | F2.3f. {DerR}(x, y) = Conj(o C O)
| |
| − | | |
| − | (( {ROS}(o, x),
| |
| − | | |
| − | {ROS}(o, y)
| |
| − | | |
| − | )) :D10a
| |
| − | </pre>
| |
| | | | |
| | =====1.3.12.3. Digression on Derived Relations <big>✔</big>===== | | =====1.3.12.3. Digression on Derived Relations <big>✔</big>===== |