| Line 4,207: |
Line 4,207: |
| | |} | | |} |
| | | | |
| − | <pre>
| + | Just to be clear about what's being indicated here, it's a visual way of summarizing the following data: |
| − | Just to be clear about what's being indicated here, | |
| − | it's a visual way of specifying the following data: | |
| | | | |
| − | d[pq]
| + | {| align="center" cellspacing="10" style="text-align:center" |
| | + | | |
| | + | <math>\begin{array}{rcccccc} |
| | + | \operatorname{d}(pq) |
| | + | & = & p & \cdot & q & \cdot & |
| | + | \texttt{(} \operatorname{d}p \texttt{,} \operatorname{d}q \texttt{)} |
| | + | \\[4pt] |
| | + | & + & p & \cdot & \texttt{(} q \texttt{)} & \cdot & \operatorname{d}q |
| | + | \\[4pt] |
| | + | & + & \texttt{(} p \texttt{)} & \cdot & q & \cdot & \operatorname{d}p |
| | + | \\[4pt] |
| | + | & + & \texttt{(} p \texttt{)} & \cdot & \texttt{(}q \texttt{)} & \cdot & 0 |
| | + | \end{array}</math> |
| | + | |} |
| | | | |
| − | =
| + | To understand the extended interpretations, that is, the conjunctions of basic and differential features that are being indicated here, it may help to note the following equivalences: |
| − | | |
| − | p q . (dp, dq)
| |
| − | | |
| − | +
| |
| − | | |
| − | p (q) . dq
| |
| − | | |
| − | +
| |
| − | | |
| − | (p) q . dp
| |
| − | | |
| − | +
| |
| − | | |
| − | (p)(q) . 0
| |
| − | | |
| − | To understand the extended interpretations, that is, | |
| − | the conjunctions of basic and differential features | |
| − | that are being indicated here, it may help to note | |
| − | the following equivalences: | |
| | | | |
| | + | <pre> |
| | (dp, dq) = dp + dq = dp(dq) + (dp)dq | | (dp, dq) = dp + dq = dp(dq) + (dp)dq |
| | | | |
| Line 4,239: |
Line 4,232: |
| | | | |
| | dq = dp dq + (dp)dq | | dq = dp dq + (dp)dq |
| | + | </pre> |
| | | | |
| − | Capping the series that analyzes the proposition pq | + | Capping the series that analyzes the proposition <math>pq\!</math> in terms of succeeding orders of linear propositions, Figure 26-2 shows the remainder map <math>\operatorname{r}(pq) : \operatorname{E}X \to \mathbb{B},</math> that happens to be linear in pairs of variables. |
| − | in terms of succeeding orders of linear propositions, | |
| − | Figure 26-2 shows the remainder map r[pq] : EX -> B, | |
| − | that happens to be linear in pairs of variables. | |
| − | </pre>
| |
| | | | |
| | {| align="center" cellspacing="10" style="text-align:center; width:90%" | | {| align="center" cellspacing="10" style="text-align:center; width:90%" |
| Line 4,291: |
Line 4,281: |
| | Reading the arrows off the map produces the following data: | | Reading the arrows off the map produces the following data: |
| | | | |
| | + | <pre> |
| | r[pq] | | r[pq] |
| | | | |
| Line 4,308: |
Line 4,299: |
| | | | |
| | (p)(q) . dp dq | | (p)(q) . dp dq |
| | + | </pre> |
| | | | |
| − | In short, r[pq] is a constant field, | + | In short, <math>\operatorname{r}(pq)</math> is a constant field, having the value <math>\operatorname{d}p~\operatorname{d}q</math> at each cell. |
| − | having the value dp dq at each cell. | |
| | | | |
| | A more detailed presentation of Differential Logic can be found here: | | A more detailed presentation of Differential Logic can be found here: |
| | | | |
| − | DLOG D. http://stderr.org/pipermail/inquiry/2003-May/thread.html#478 | + | * DLOG D. http://stderr.org/pipermail/inquiry/2003-May/thread.html#478 |
| − | DLOG D. http://stderr.org/pipermail/inquiry/2003-June/thread.html#553 | + | * DLOG D. http://stderr.org/pipermail/inquiry/2003-June/thread.html#553 |
| − | DLOG D. http://stderr.org/pipermail/inquiry/2003-June/thread.html#571 | + | * DLOG D. http://stderr.org/pipermail/inquiry/2003-June/thread.html#571 |
| − | </pre>
| |
| | | | |
| | ==Document History== | | ==Document History== |