| Line 2,929: |
Line 2,929: |
| | |- style="height:48px; text-align:right" | | |- style="height:48px; text-align:right" |
| | | width="98%" | <math>\text{Logical Translation Rule 1}\!</math> | | | width="98%" | <math>\text{Logical Translation Rule 1}\!</math> |
| − | | width=2%" | | + | | width="2%" | |
| | |} | | |} |
| | |- | | |- |
| Line 2,964: |
Line 2,964: |
| | | width="20%" style="border-top:1px solid black" | | | | width="20%" style="border-top:1px solid black" | |
| | <math>\downharpoonleft \operatorname{false} \downharpoonright</math> | | <math>\downharpoonleft \operatorname{false} \downharpoonright</math> |
| − | | width="5%" style="border-top:1px solid black" | <math>=\!</math> | + | | width="5%" style="border-top:1px solid black" | <math>=\!</math> |
| | | width="20%" style="border-top:1px solid black" | <math>(~)</math> | | | width="20%" style="border-top:1px solid black" | <math>(~)</math> |
| − | | width="5%" style="border-top:1px solid black" | <math>=\!</math> | + | | width="5%" style="border-top:1px solid black" | <math>=\!</math> |
| | | width="30%" style="border-top:1px solid black" | | | | width="30%" style="border-top:1px solid black" | |
| | <math>\underline{0} ~:~ X \to \underline\mathbb{B}</math> | | <math>\underline{0} ~:~ X \to \underline\mathbb{B}</math> |
| Line 2,998: |
Line 2,998: |
| | <br> | | <br> |
| | | | |
| − | <pre> | + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black" width="90%" |
| − | Geometric Translation Rule 1 | + | | |
| − | | + | {| align="center" cellpadding="0" cellspacing="0" width="100%" |
| − | If X c U | + | |- style="height:48px; text-align:right" |
| − | | + | | width="98%" | <math>\text{Geometric Translation Rule 1}\!</math> |
| − | and P : U -> B, such that: | + | | width="2%" | |
| − | | + | |} |
| − | G1a. {X} = P, | + | |- |
| − | | + | | |
| − | then the following equations hold: | + | {| align="center" cellpadding="0" cellspacing="0" width="100%" |
| − | | + | |- style="height:48px" |
| − | G1b00. {{}} = () = 0 : U->B.
| + | | width="2%" style="border-top:1px solid black" | |
| − | | + | | width="18%" style="border-top:1px solid black" | <math>\text{If}\!</math> |
| − | G1b10. {~X} = ({X}) = (P) : U->B.
| + | | width="80%" style="border-top:1px solid black" | <math>Q \subseteq X</math> |
| − | | + | |- style="height:48px" |
| − | G1b01. {X} = {X} = P : U->B.
| + | | |
| − | | + | | <math>\text{and}\!</math> |
| − | G1b11. {U} = (()) = 1 : U->B.
| + | | <math>p ~:~ X \to \underline\mathbb{B}</math> |
| − | </pre> | + | |- style="height:48px" |
| | + | | |
| | + | | <math>\text{such that:}\!</math> |
| | + | | |
| | + | |- style="height:48px" |
| | + | | |
| | + | | <math>\text{G1a.}\!</math> |
| | + | | <math>\upharpoonleft Q \upharpoonright ~=~ p</math> |
| | + | |- style="height:48px" |
| | + | | |
| | + | | <math>\text{then}\!</math> |
| | + | | <math>\text{the following equations hold:}\!</math> |
| | + | |} |
| | + | |- |
| | + | | |
| | + | {| align="center" cellpadding="0" cellspacing="0" style="text-align:center" width="100%" |
| | + | |- style="height:52px" |
| | + | | width="2%" style="border-top:1px solid black" | |
| | + | | width="18%" style="border-top:1px solid black" align="left" | <math>\text{G1b}_{00}.\!</math> |
| | + | | width="20%" style="border-top:1px solid black" | |
| | + | <math>\upharpoonleft \varnothing \upharpoonright</math> |
| | + | | width="5%" style="border-top:1px solid black" | <math>=\!</math> |
| | + | | width="20%" style="border-top:1px solid black" | <math>(~)</math> |
| | + | | width="5%" style="border-top:1px solid black" | <math>=\!</math> |
| | + | | width="30%" style="border-top:1px solid black" | |
| | + | <math>\underline{0} ~:~ X \to \underline\mathbb{B}</math> |
| | + | |- style="height:52px" |
| | + | | |
| | + | | align="left" | <math>\text{G1b}_{01}.\!</math> |
| | + | | <math>\upharpoonleft {}^{_\sim} Q \upharpoonright</math> |
| | + | | <math>=\!</math> |
| | + | | <math>(\upharpoonleft Q \upharpoonright)</math> |
| | + | | <math>=\!</math> |
| | + | | <math>(p) ~:~ X \to \underline\mathbb{B}</math> |
| | + | |- style="height:52px" |
| | + | | |
| | + | | align="left" | <math>\text{G1b}_{10}.\!</math> |
| | + | | <math>\upharpoonleft Q \upharpoonright</math> |
| | + | | <math>=\!</math> |
| | + | | <math>\upharpoonleft Q \upharpoonright</math> |
| | + | | <math>=\!</math> |
| | + | | <math>p ~:~ X \to \underline\mathbb{B}</math> |
| | + | |- style="height:52px" |
| | + | | |
| | + | | align="left" | <math>\text{G1b}_{11}.\!</math> |
| | + | | <math>\upharpoonleft X \upharpoonright</math> |
| | + | | <math>=\!</math> |
| | + | | <math>((~))</math> |
| | + | | <math>=\!</math> |
| | + | | <math>\underline{1} ~:~ X \to \underline\mathbb{B}</math> |
| | + | |} |
| | + | |} |
| | | | |
| | <br> | | <br> |