| Line 567: | Line 567: | 
|  | ===Measure for Measure=== |  | ===Measure for Measure=== | 
|  |  |  |  | 
| − | An acquaintance with the functions ofthe umpire operator can be gained from Tables 4 and 5, where the 2-dimensional case is worked out in full.
 | + | Define two families of measures: | 
|  |  |  |  | 
| − | The auxiliary notations:
 | + | {| align="center" cellpadding="8" | 
|  | + | | <math>\alpha_i, \beta_i : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}, i = 0 \ldots 15,</math> | 
|  | + | |} | 
|  |  |  |  | 
| − | : <math>\alpha_i f = \Upsilon (f_i, f),\!</math> | + | by means of the following formulas: | 
|  |  |  |  | 
| − | : <math>\beta_i f = \Upsilon(f, f_i),\!</math>
 | + | {| align="center" cellpadding="8" | 
| − |   | + | | <math>\alpha_i f = \Upsilon \langle f_i, f \rangle = \Upsilon \langle f_i \Rightarrow f \rangle,</math> | 
| − | define two series of measures:
 | + | |- | 
| − |   | + | | <math>\beta_i f = \Upsilon \langle f, f_i \rangle = \Upsilon \langle f \Rightarrow f_i \rangle.</math> | 
| − | : <math>\alpha_i, \beta_i : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B},</math>
 | + | |} | 
|  |  |  |  | 
| − | incidentally providing compact names for thecolumn headings of thenext two Tables.
 | + | The values of the sixteen <math>\alpha_i\!</math> on each of the sixteen boolean functions <math>f : \mathbb{B}^2 \to \mathbb{B}</math> are shown in Table 13.  Expressed in terms of the implication ordering on the sixteen functions, <math>\alpha_i f = 1\!</math> says that <math>f\!</math> is ''above or identical to'' <math>f_i\!</math> in the implication lattice, that is, <math>\ge f_i\!</math> in the implication ordering. | 
|  |  |  |  | 
|  | {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |  | {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | 
| Line 924: | Line 926: | 
|  | | style="background:black; color:white" | 1 |  | | style="background:black; color:white" | 1 | 
|  | |}<br> |  | |}<br> | 
|  | + |  | 
|  | + | The values of the sixteen <math>\beta_i\!</math> on each of the sixteen boolean functions <math>f : \mathbb{B}^2 \to \mathbb{B}</math> are shown in Table 14.  Expressed in terms of the implication ordering on the sixteen functions, <math>\beta_i f = 1\!</math> says that <math>f\!</math> is ''below or identical to'' <math>f_i\!</math> in the implication lattice, that is, <math>\le f_i\!</math> in the implication ordering. | 
|  |  |  |  | 
|  | {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |  | {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | 
| Line 1,305: | Line 1,309: | 
|  | \operatorname{for~all}\ f. \\ |  | \operatorname{for~all}\ f. \\ | 
|  | \end{matrix}</math></center> |  | \end{matrix}</math></center> | 
|  | + | <br> | 
|  |  |  |  | 
|  | Thus, <math>\alpha_0 = \beta_{15}\!</math> is a totally indiscriminate measure, one that accepts all propositions <math>f : \mathbb{B}^2 \to \mathbb{B},</math> whereas <math>\alpha_{15}\!</math> and <math>\beta_0\!</math> are measures that value the constant propositions <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> and <math>0 : \mathbb{B}^2 \to \mathbb{B},</math> respectively, above all others. |  | Thus, <math>\alpha_0 = \beta_{15}\!</math> is a totally indiscriminate measure, one that accepts all propositions <math>f : \mathbb{B}^2 \to \mathbb{B},</math> whereas <math>\alpha_{15}\!</math> and <math>\beta_0\!</math> are measures that value the constant propositions <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> and <math>0 : \mathbb{B}^2 \to \mathbb{B},</math> respectively, above all others. | 
| Line 1,310: | Line 1,315: | 
|  | Finally, in conformity with the use of the fiber notation to indicate sets of models, it is natural to use notations like: |  | Finally, in conformity with the use of the fiber notation to indicate sets of models, it is natural to use notations like: | 
|  |  |  |  | 
| − | : <math>[| \alpha_i |] = (\alpha_i)^{-1}(1),\!</math>
 | + | {| align="center" cellpadding="8" | 
| − |   | + | | <math>[| \alpha_i |]\!</math> | 
| − | : <math>[| \beta_i |] = (\beta_i)^{-1}(1),\!</math>
 | + | | <math>=\!</math> | 
| − |   | + | | <math>(\alpha_i)^{-1}(1),\!</math> | 
| − | : <math>[| \Upsilon_p |] = (\Upsilon_p)^{-1}(1),\!</math>
 | + | |- | 
|  | + | | <math>[| \beta_i |]\!</math> | 
|  | + | | <math>=\!</math> | 
|  | + | | <math>(\beta_i)^{-1}(1),\!</math> | 
|  | + | |- | 
|  | + | | <math>[| \Upsilon_p |]\!</math> | 
|  | + | | <math>=\!</math> | 
|  | + | | <math>(\Upsilon_p)^{-1}(1),\!</math> | 
|  | + | |} | 
|  |  |  |  | 
|  | to denote sets of propositions that satisfy the umpires in question. |  | to denote sets of propositions that satisfy the umpires in question. |