Line 907: |
Line 907: |
| Under ''Ex'' the expression <math>(p\ (q))(p\ (r))\!</math> interprets as the vernacular expression <math>p\ \operatorname{implies}\ q\ \operatorname{and}\ p\ \operatorname{implies}\ r,</math> in symbols, <math>\{ p \Rightarrow q \} \land \{ p \Rightarrow r \},</math> so this is the reading that we'll want to keep in mind for the present. | | Under ''Ex'' the expression <math>(p\ (q))(p\ (r))\!</math> interprets as the vernacular expression <math>p\ \operatorname{implies}\ q\ \operatorname{and}\ p\ \operatorname{implies}\ r,</math> in symbols, <math>\{ p \Rightarrow q \} \land \{ p \Rightarrow r \},</math> so this is the reading that we'll want to keep in mind for the present. |
| | | |
− | Where brevity is required, and it occasionally is, we may invoke the propositional expression "(p (q))(p (r))" under the name "''f''" by making use of the following definition: "f = (p (q))(p (r))". | + | Where brevity is required, and it occasionally is, we may invoke the propositional expression <math>(p\ (q))(p\ (r))\!</math> under the name of <math>f\!</math> by making use of the following definition: <math>f = (p\ (q))(p\ (r)).\!</math> |
| | | |
− | Since the expression "(p (q))(p (r))" involves just three variables, it may be worth the trouble to draw a venn diagram of the situation. There are in fact a couple of different ways to execute the picture. | + | Since the expression <math>(p\ (q))(p\ (r))\!</math> involves just three variables, it may be worth the trouble to draw a venn diagram of the situation. There are in fact a couple of different ways to execute the picture. |
| | | |
− | Figure 1 indicates the points of the universe of discourse ''X'' for which the proposition ''f'' : ''X'' → '''B''' has the value 1 (= true). In this ''paint by numbers'' style of picture, one simply paints over the cells of a generic template for the universe ''X'', going according to some previously adopted convention, for instance: Let the cells that get the value 0 under ''f'' remain untinted, and let the cells that get the value 1 under ''f'' be painted or shaded. In doing this, it may be good to remind ourselves that the value of the picture as a whole is not in the ''paints'', in other words, the 0, 1 in '''B''', but in the pattern of regions that they indicate. NB. In this Ascii version, I use [```] for 0 and [^^^] for 1. | + | Figure 1 indicates the points of the universe of discourse ''X'' for which the proposition ''f'' : ''X'' → '''B''' has the value 1 (= true). In this ''paint by numbers'' style of picture, one simply paints over the cells of a generic template for the universe ''X'', going according to some previously adopted convention, for instance: Let the cells that get the value 0 under ''f'' remain untinted, and let the cells that get the value 1 under ''f'' be painted or shaded. In doing this, it may be good to remind ourselves that the value of the picture as a whole is not in the ''paints'', in other words, the 0, 1 in '''B''', but in the pattern of regions that they indicate. NB. In this Ascii version, I use [```] for 0 and [^^^] for 1. |
| | | |
− | o-----------------------------------------------------------o
| + | <pre> |
− | | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ |
| + | o-----------------------------------------------------------o |
− | | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ |
| + | | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | |
− | | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^o-------------o^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ |
| + | | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | |
− | | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ / ` ` ` ` ` ` ` \ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ |
| + | | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^o-------------o^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | |
− | | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^/` ` ` ` ` ` ` ` `\^ ^ ^ ^ ^ ^ ^ ^ ^ ^ |
| + | | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ / ` ` ` ` ` ` ` \ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | |
− | | ^ ^ ^ ^ ^ ^ ^ ^ ^ / ` ` ` ` ` ` ` ` ` \ ^ ^ ^ ^ ^ ^ ^ ^ ^ |
| + | | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^/` ` ` ` ` ` ` ` `\^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | |
− | | ^ ^ ^ ^ ^ ^ ^ ^ ^/` ` ` ` ` ` ` ` ` ` `\^ ^ ^ ^ ^ ^ ^ ^ ^ |
| + | | ^ ^ ^ ^ ^ ^ ^ ^ ^ / ` ` ` ` ` ` ` ` ` \ ^ ^ ^ ^ ^ ^ ^ ^ ^ | |
− | | ^ ^ ^ ^ ^ ^ ^ ^ / ` ` ` ` ` ` ` ` ` ` ` \ ^ ^ ^ ^ ^ ^ ^ ^ |
| + | | ^ ^ ^ ^ ^ ^ ^ ^ ^/` ` ` ` ` ` ` ` ` ` `\^ ^ ^ ^ ^ ^ ^ ^ ^ | |
− | | ^ ^ ^ ^ ^ ^ ^ ^o` ` ` ` ` ` ` ` ` ` ` ` `o^ ^ ^ ^ ^ ^ ^ ^ |
| + | | ^ ^ ^ ^ ^ ^ ^ ^ / ` ` ` ` ` ` ` ` ` ` ` \ ^ ^ ^ ^ ^ ^ ^ ^ | |
− | | ^ ^ ^ ^ ^ ^ ^ ^|` ` ` ` ` ` ` ` ` ` ` ` `|^ ^ ^ ^ ^ ^ ^ ^ |
| + | | ^ ^ ^ ^ ^ ^ ^ ^o` ` ` ` ` ` ` ` ` ` ` ` `o^ ^ ^ ^ ^ ^ ^ ^ | |
− | | ^ ^ ^ ^ ^ ^ ^ ^|` ` ` ` ` ` P ` ` ` ` ` `|^ ^ ^ ^ ^ ^ ^ ^ |
| + | | ^ ^ ^ ^ ^ ^ ^ ^|` ` ` ` ` ` ` ` ` ` ` ` `|^ ^ ^ ^ ^ ^ ^ ^ | |
− | | ^ ^ ^ ^ ^ ^ ^ ^|` ` ` ` ` ` ` ` ` ` ` ` `|^ ^ ^ ^ ^ ^ ^ ^ |
| + | | ^ ^ ^ ^ ^ ^ ^ ^|` ` ` ` ` ` P ` ` ` ` ` `|^ ^ ^ ^ ^ ^ ^ ^ | |
− | | ^ ^ ^ ^ ^ ^ ^ ^|` ` ` ` ` ` ` ` ` ` ` ` `|^ ^ ^ ^ ^ ^ ^ ^ |
| + | | ^ ^ ^ ^ ^ ^ ^ ^|` ` ` ` ` ` ` ` ` ` ` ` `|^ ^ ^ ^ ^ ^ ^ ^ | |
− | | ^ ^ ^ ^ ^ ^ ^ ^|` ` ` ` ` ` ` ` ` ` ` ` `|^ ^ ^ ^ ^ ^ ^ ^ |
| + | | ^ ^ ^ ^ ^ ^ ^ ^|` ` ` ` ` ` ` ` ` ` ` ` `|^ ^ ^ ^ ^ ^ ^ ^ | |
− | | ^ ^ ^ ^ ^ ^ o--o----------o ` o----------o--o ^ ^ ^ ^ ^ ^ |
| + | | ^ ^ ^ ^ ^ ^ ^ ^|` ` ` ` ` ` ` ` ` ` ` ` `|^ ^ ^ ^ ^ ^ ^ ^ | |
− | | ^ ^ ^ ^ ^ ^/^ ^ \ ` ` ` ` `\`/` ` ` ` ` / ^ ^\^ ^ ^ ^ ^ ^ |
| + | | ^ ^ ^ ^ ^ ^ o--o----------o ` o----------o--o ^ ^ ^ ^ ^ ^ | |
− | | ^ ^ ^ ^ ^ / ^ ^ ^\` ` ` ` ` o ` ` ` ` `/^ ^ ^ \ ^ ^ ^ ^ ^ |
| + | | ^ ^ ^ ^ ^ ^/^ ^ \ ` ` ` ` `\`/` ` ` ` ` / ^ ^\^ ^ ^ ^ ^ ^ | |
− | | ^ ^ ^ ^ ^/^ ^ ^ ^ \ ` ` ` `/^\` ` ` ` / ^ ^ ^ ^\^ ^ ^ ^ ^ |
| + | | ^ ^ ^ ^ ^ / ^ ^ ^\` ` ` ` ` o ` ` ` ` `/^ ^ ^ \ ^ ^ ^ ^ ^ | |
− | | ^ ^ ^ ^ / ^ ^ ^ ^ ^\` ` ` / ^ \ ` ` `/^ ^ ^ ^ ^ \ ^ ^ ^ ^ |
| + | | ^ ^ ^ ^ ^/^ ^ ^ ^ \ ` ` ` `/^\` ` ` ` / ^ ^ ^ ^\^ ^ ^ ^ ^ | |
− | | ^ ^ ^ ^/^ ^ ^ ^ ^ ^ \ ` `/^ ^ ^\` ` / ^ ^ ^ ^ ^ ^\^ ^ ^ ^ |
| + | | ^ ^ ^ ^ / ^ ^ ^ ^ ^\` ` ` / ^ \ ` ` `/^ ^ ^ ^ ^ \ ^ ^ ^ ^ | |
− | | ^ ^ ^ o ^ ^ ^ ^ ^ ^ ^o--o-------o--o^ ^ ^ ^ ^ ^ ^ o ^ ^ ^ |
| + | | ^ ^ ^ ^/^ ^ ^ ^ ^ ^ \ ` `/^ ^ ^\` ` / ^ ^ ^ ^ ^ ^\^ ^ ^ ^ | |
− | | ^ ^ ^ | ^ ^ ^ ^ ^ ^ ^ ^ | ^ ^ ^ | ^ ^ ^ ^ ^ ^ ^ ^ | ^ ^ ^ |
| + | | ^ ^ ^ o ^ ^ ^ ^ ^ ^ ^o--o-------o--o^ ^ ^ ^ ^ ^ ^ o ^ ^ ^ | |
− | | ^ ^ ^ | ^ ^ ^ ^ ^ ^ ^ ^ | ^ ^ ^ | ^ ^ ^ ^ ^ ^ ^ ^ | ^ ^ ^ |
| + | | ^ ^ ^ | ^ ^ ^ ^ ^ ^ ^ ^ | ^ ^ ^ | ^ ^ ^ ^ ^ ^ ^ ^ | ^ ^ ^ | |
− | | ^ ^ ^ | ^ ^ ^ ^ ^ ^ ^ ^ | ^ ^ ^ | ^ ^ ^ ^ ^ ^ ^ ^ | ^ ^ ^ |
| + | | ^ ^ ^ | ^ ^ ^ ^ ^ ^ ^ ^ | ^ ^ ^ | ^ ^ ^ ^ ^ ^ ^ ^ | ^ ^ ^ | |
− | | ^ ^ ^ | ^ ^ ^ Q ^ ^ ^ ^ | ^ ^ ^ | ^ ^ ^ ^ R ^ ^ ^ | ^ ^ ^ |
| + | | ^ ^ ^ | ^ ^ ^ ^ ^ ^ ^ ^ | ^ ^ ^ | ^ ^ ^ ^ ^ ^ ^ ^ | ^ ^ ^ | |
− | | ^ ^ ^ | ^ ^ ^ ^ ^ ^ ^ ^ | ^ ^ ^ | ^ ^ ^ ^ ^ ^ ^ ^ | ^ ^ ^ |
| + | | ^ ^ ^ | ^ ^ ^ Q ^ ^ ^ ^ | ^ ^ ^ | ^ ^ ^ ^ R ^ ^ ^ | ^ ^ ^ | |
− | | ^ ^ ^ o ^ ^ ^ ^ ^ ^ ^ ^ o ^ ^ ^ o ^ ^ ^ ^ ^ ^ ^ ^ o ^ ^ ^ |
| + | | ^ ^ ^ | ^ ^ ^ ^ ^ ^ ^ ^ | ^ ^ ^ | ^ ^ ^ ^ ^ ^ ^ ^ | ^ ^ ^ | |
− | | ^ ^ ^ ^\^ ^ ^ ^ ^ ^ ^ ^ ^\^ ^ ^/^ ^ ^ ^ ^ ^ ^ ^ ^/^ ^ ^ ^ |
| + | | ^ ^ ^ o ^ ^ ^ ^ ^ ^ ^ ^ o ^ ^ ^ o ^ ^ ^ ^ ^ ^ ^ ^ o ^ ^ ^ | |
− | | ^ ^ ^ ^ \ ^ ^ ^ ^ ^ ^ ^ ^ \ ^ / ^ ^ ^ ^ ^ ^ ^ ^ / ^ ^ ^ ^ |
| + | | ^ ^ ^ ^\^ ^ ^ ^ ^ ^ ^ ^ ^\^ ^ ^/^ ^ ^ ^ ^ ^ ^ ^ ^/^ ^ ^ ^ | |
− | | ^ ^ ^ ^ ^\^ ^ ^ ^ ^ ^ ^ ^ ^\^/^ ^ ^ ^ ^ ^ ^ ^ ^/^ ^ ^ ^ ^ |
| + | | ^ ^ ^ ^ \ ^ ^ ^ ^ ^ ^ ^ ^ \ ^ / ^ ^ ^ ^ ^ ^ ^ ^ / ^ ^ ^ ^ | |
− | | ^ ^ ^ ^ ^ \ ^ ^ ^ ^ ^ ^ ^ ^ o ^ ^ ^ ^ ^ ^ ^ ^ / ^ ^ ^ ^ ^ |
| + | | ^ ^ ^ ^ ^\^ ^ ^ ^ ^ ^ ^ ^ ^\^/^ ^ ^ ^ ^ ^ ^ ^ ^/^ ^ ^ ^ ^ | |
− | | ^ ^ ^ ^ ^ ^\^ ^ ^ ^ ^ ^ ^ ^/^\^ ^ ^ ^ ^ ^ ^ ^/^ ^ ^ ^ ^ ^ |
| + | | ^ ^ ^ ^ ^ \ ^ ^ ^ ^ ^ ^ ^ ^ o ^ ^ ^ ^ ^ ^ ^ ^ / ^ ^ ^ ^ ^ | |
− | | ^ ^ ^ ^ ^ ^ o-------------o ^ o-------------o ^ ^ ^ ^ ^ ^ |
| + | | ^ ^ ^ ^ ^ ^\^ ^ ^ ^ ^ ^ ^ ^/^\^ ^ ^ ^ ^ ^ ^ ^/^ ^ ^ ^ ^ ^ | |
− | | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ |
| + | | ^ ^ ^ ^ ^ ^ o-------------o ^ o-------------o ^ ^ ^ ^ ^ ^ | |
− | | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ |
| + | | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | |
− | o-----------------------------------------------------------o
| + | | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | |
− | Figure 1. Venn Diagram for (p (q))(p (r))
| + | o-----------------------------------------------------------o |
| + | Figure 1. Venn Diagram for (p (q))(p (r)) |
| + | </pre> |
| | | |
| There are a number of standard ways in mathematics and statistics for talking about "the subset ''W'' of the domain ''X'' that gets painted with the value ''z'' by the indicator function ''f'' : ''X'' → '''B'''". The subset | | There are a number of standard ways in mathematics and statistics for talking about "the subset ''W'' of the domain ''X'' that gets painted with the value ''z'' by the indicator function ''f'' : ''X'' → '''B'''". The subset |