| Line 261: |
Line 261: |
| | \end{tabular}\end{center} | | \end{tabular}\end{center} |
| | | | |
| − | An initial universe of discourse, $A^\circ$, supplies the groundwork for any number of further extensions, beginning with the \textit{first order differential extension}, $\operatorname{E}A^\circ.$ This extends the initial alphabet, $\mathfrak{A} = \{ ``a_1", \ldots, ``a_n" \},$ by a \textit{first order differential alphabet}, $\operatorname{d}\mathfrak{A} = \{ ``\operatorname{d}a_1", \ldots, ``\operatorname{d}a_n" \},$ resulting in the \textit{first order extended alphabet}, $\operatorname{E}\mathfrak{A},$ defined as follows: | + | An initial universe of discourse, $A^\circ$, supplies the groundwork for any number of further extensions, beginning with the \textit{first order differential extension}, $\operatorname{E}A^\circ.$ The construction of $\operatorname{E}A^\circ$ can be described in the following stages: |
| | + | |
| | + | \begin{itemize} |
| | + | \item |
| | + | The initial alphabet, $\mathfrak{A} = \{ ``a_1", \ldots, ``a_n" \},$ is extended by a \textit{first order differential alphabet}, $\operatorname{d}\mathfrak{A} = \{ ``\operatorname{d}a_1", \ldots, ``\operatorname{d}a_n" \},$ resulting in the \textit{first order extended alphabet}, $\operatorname{E}\mathfrak{A},$ defined as follows: |
| | | | |
| | \begin{quote} | | \begin{quote} |
| − | $\operatorname{E}\mathfrak{A} = \mathfrak{A} \cup \operatorname{d}\mathfrak{A} = \{ ``a_1", \ldots, ``a_n", ``\operatorname{d}a_1", \ldots, ``\operatorname{d}a_n" \}.$ | + | $\operatorname{E}\mathfrak{A} = \mathfrak{A}\ \cup\ \operatorname{d}\mathfrak{A} = \{ ``a_1", \ldots, ``a_n", ``\operatorname{d}a_1", \ldots, ``\operatorname{d}a_n" \}.$ |
| | \end{quote} | | \end{quote} |
| | + | |
| | + | \item |
| | + | The initial basis, $\mathcal{A} = \{ a_1, \ldots, a_n \},$ is extended by a \textit{first order differential basis}, $\operatorname{d}\mathcal{A} = \{ \operatorname{d}a_1, \ldots, \operatorname{d}a_n \},$ resulting in the \textit{first order extended basis}, $\operatorname{E}\mathcal{A},$ defined as follows: |
| | + | |
| | + | \begin{quote} |
| | + | $\operatorname{E}\mathcal{A} = \mathcal{A}\ \cup\ \operatorname{d}\mathcal{A} = \{ a_1, \ldots, a_n, \operatorname{d}a_1, \ldots, \operatorname{d}a_n \}.$ |
| | + | \end{quote} |
| | + | \end{itemize} |
| | | | |
| | $\dots$ | | $\dots$ |
| Line 363: |
Line 375: |
| | </pre> | | </pre> |
| | | | |
| − | =Work Area= | + | =Work Area 1= |
| | | | |
| | ==Formal development== | | ==Formal development== |
| Line 3,163: |
Line 3,175: |
| | |}<br> | | |}<br> |
| | | | |
| − | =Work Area 1= | + | =Work Area 2= |
| | | | |
| | ==Orbit Table Template== | | ==Orbit Table Template== |