Line 8,908: |
Line 8,908: |
| | | |
| <br> | | <br> |
| + | |
| + | ====Differential Forms==== |
| + | |
| + | The actions of the difference operator <math>\mathrm{D}\!</math> and the tangent operator <math>\mathrm{d}\!</math> on the 16 bivariate propositions are shown in Tables A7 and A8. |
| + | |
| + | Table A7 expands the differential forms that result over a ''logical basis'': |
| + | |
| + | {| align="center" cellpadding="6" style="text-align:center" |
| + | | |
| + | <math>\{~ \texttt{(}\mathrm{d}x\texttt{)(}\mathrm{d}y\texttt{)}, ~\mathrm{d}x~\texttt{(}\mathrm{d}y\texttt{)}, ~\texttt{(}\mathrm{d}x\texttt{)}~\mathrm{d}y, ~\mathrm{d}x~\mathrm{d}y ~\}.\!</math> |
| + | |} |
| + | |
| + | This set consists of the singular propositions in the first order differential variables, indicating mutually exclusive and exhaustive ''cells'' of the tangent universe of discourse. Accordingly, this set of differential propositions may also be referred to as the cell-basis, point-basis, or singular differential basis. In this setting it is frequently convenient to use the following abbreviations: |
| + | |
| + | {| align="center" cellpadding="6" style="text-align:center" |
| + | | |
| + | <math>\partial x ~=~ \mathrm{d}x~\texttt{(}\mathrm{d}y\texttt{)}\!</math> and <math>\partial y ~=~ \texttt{(}\mathrm{d}x\texttt{)}~\mathrm{d}y.\!</math> |
| + | |} |
| + | |
| + | Table A8 expands the differential forms that result over an ''algebraic basis'': |
| + | |
| + | {| align="center" cellpadding="6" style="text-align:center" |
| + | | <math>\{~ 1, ~\mathrm{d}x, ~\mathrm{d}y, ~\mathrm{d}x~\mathrm{d}y ~\}.\!</math> |
| + | |} |
| + | |
| + | This set consists of the ''positive propositions'' in the first order differential variables, indicating overlapping positive regions of the tangent universe of discourse. Accordingly, this set of differential propositions may also be referred to as the ''positive differential basis''. |
| + | |
| + | ====Table A7. Differential Forms Expanded on a Logical Basis==== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table A7.} ~~ \text{Differential Forms Expanded on a Logical Basis}\!</math> |
| + | |- style="background:ghostwhite; height:40px" |
| + | | |
| + | | style="border-right:none" | <math>f\!</math> |
| + | | style="border-left:4px double black" | <math>\mathrm{D}f</math> |
| + | | <math>\mathrm{d}f</math> |
| + | |- |
| + | | <math>f_{0}\!</math> |
| + | | style="border-right:none" | <math>\texttt{(~)}\!</math> |
| + | | style="border-left:4px double black" | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | |- |
| + | | <math>\begin{matrix}f_{1}\\f_{2}\\f_{4}\\f_{8}\end{matrix}</math> |
| + | | style="border-right:none" | |
| + | <math>\begin{matrix} |
| + | \texttt{(} x \texttt{)(} y \texttt{)} |
| + | \\ |
| + | \texttt{(} x \texttt{)~} y \texttt{~} |
| + | \\ |
| + | \texttt{~} x \texttt{~(} y \texttt{)} |
| + | \\ |
| + | \texttt{~} x \texttt{~~} y \texttt{~} |
| + | \end{matrix}</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | \texttt{(} y \texttt{)} & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} |
| + | & + & |
| + | \texttt{(} x \texttt{)} & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y |
| + | & + & |
| + | \texttt{((} x \texttt{,~} y \texttt{))} & \mathrm{d}x ~ \mathrm{d}y |
| + | \\ |
| + | y & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} |
| + | & + & |
| + | \texttt{(} x \texttt{)} & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y |
| + | & + & |
| + | \texttt{(} x \texttt{,~} y \texttt{)} & \mathrm{d}x ~ \mathrm{d}y |
| + | \\ |
| + | \texttt{(} y \texttt{)} & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} |
| + | & + & |
| + | x & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y |
| + | & + & |
| + | \texttt{(} x \texttt{,~} y \texttt{)} & \mathrm{d}x ~ \mathrm{d}y |
| + | \\ |
| + | y & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} |
| + | & + & |
| + | x & \texttt{(} \mathrm{d}x) ~ \mathrm{d}y |
| + | & + & |
| + | \texttt{((} x \texttt{,~} y \texttt{))} & \mathrm{d}x ~ \mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \texttt{(} y \texttt{)} ~\partial x |
| + | & + & |
| + | \texttt{(} x \texttt{)} ~\partial y |
| + | \\ |
| + | \texttt{~} y \texttt{~} ~\partial x |
| + | & + & |
| + | \texttt{(} x \texttt{)} ~\partial y |
| + | \\ |
| + | \texttt{(} y \texttt{)} ~\partial x |
| + | & + & |
| + | \texttt{~} x \texttt{~} ~\partial y |
| + | \\ |
| + | \texttt{~} y \texttt{~} ~\partial x |
| + | & + & |
| + | \texttt{~} x \texttt{~} ~\partial y |
| + | \end{matrix}</math> |
| + | |- |
| + | | <math>\begin{matrix}f_{3}\\f_{12}\end{matrix}</math> |
| + | | style="border-right:none" | |
| + | <math>\begin{matrix} |
| + | \texttt{(} x \texttt{)} |
| + | \\ |
| + | \texttt{~} x \texttt{~} |
| + | \end{matrix}</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} & + & \mathrm{d}x ~ \mathrm{d}y |
| + | \\ |
| + | \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} & + & \mathrm{d}x ~ \mathrm{d}y |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \partial x |
| + | \\ |
| + | \partial x |
| + | \end{matrix}</math> |
| + | |- |
| + | | <math>\begin{matrix}f_{6}\\f_{9}\end{matrix}</math> |
| + | | style="border-right:none" | |
| + | <math>\begin{matrix} |
| + | \texttt{~(} x \texttt{,~} y \texttt{)~} |
| + | \\ |
| + | \texttt{((} x \texttt{,~} y \texttt{))} |
| + | \end{matrix}</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} & + & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y |
| + | \\ |
| + | \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} & + & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \partial x & + & \partial y |
| + | \\ |
| + | \partial x & + & \partial y |
| + | \end{matrix}</math> |
| + | |- |
| + | | <math>\begin{matrix}f_{5}\\f_{10}\end{matrix}</math> |
| + | | style="border-right:none" | |
| + | <math>\begin{matrix} |
| + | \texttt{(} y \texttt{)} |
| + | \\ |
| + | \texttt{~} y \texttt{~} |
| + | \end{matrix}</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y & + & \mathrm{d}x ~ \mathrm{d}y |
| + | \\ |
| + | \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y & + & \mathrm{d}x ~ \mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \partial y |
| + | \\ |
| + | \partial y |
| + | \end{matrix}</math> |
| + | |- |
| + | | <math>\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}</math> |
| + | | style="border-right:none" | |
| + | <math>\begin{matrix} |
| + | \texttt{(~} x \texttt{~~} y \texttt{~)} |
| + | \\ |
| + | \texttt{(~} x \texttt{~(} y \texttt{))} |
| + | \\ |
| + | \texttt{((} x \texttt{)~} y \texttt{~)} |
| + | \\ |
| + | \texttt{((} x \texttt{)(} y \texttt{))} |
| + | \end{matrix}</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | y & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} |
| + | & + & |
| + | x & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y |
| + | & + & |
| + | \texttt{((} x \texttt{,~} y \texttt{))} & \mathrm{d}x ~ \mathrm{d}y |
| + | \\ |
| + | \texttt{(} y \texttt{)} & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} |
| + | & + & |
| + | x & \texttt{(} \mathrm{d}x) ~ \mathrm{d}y |
| + | & + & |
| + | \texttt{(} x \texttt{,~} y \texttt{)} & \mathrm{d}x ~ \mathrm{d}y |
| + | \\ |
| + | y & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} |
| + | & + & |
| + | \texttt{(} x \texttt{)} & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y |
| + | & + & |
| + | \texttt{(} x \texttt{,~} y \texttt{)} & \mathrm{d}x ~ \mathrm{d}y |
| + | \\ |
| + | \texttt{(} y \texttt{)} & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} |
| + | & + & |
| + | \texttt{(} x \texttt{)} & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y |
| + | & + & |
| + | \texttt{((} x \texttt{,~} y \texttt{))} & \mathrm{d}x ~ \mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \texttt{~} y \texttt{~} ~\partial x |
| + | & + & |
| + | \texttt{~} x \texttt{~} ~\partial y |
| + | \\ |
| + | \texttt{(} y \texttt{)} ~\partial x |
| + | & + & |
| + | \texttt{~} x \texttt{~} ~\partial y |
| + | \\ |
| + | \texttt{~} y \texttt{~} ~\partial x |
| + | & + & |
| + | \texttt{(} x \texttt{)} ~\partial y |
| + | \\ |
| + | \texttt{(} y \texttt{)} ~\partial x |
| + | & + & |
| + | \texttt{(} x \texttt{)} ~\partial y |
| + | \end{matrix}</math> |
| + | |- |
| + | | <math>f_{15}\!</math> |
| + | | style="border-right:none" | <math>\texttt{((~))}\!</math> |
| + | | style="border-left:4px double black" | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | ====Table A8. Differential Forms Expanded on an Algebraic Basis==== |
| | | |
| ====Table A12. Detail of Calculation for the Difference Map==== | | ====Table A12. Detail of Calculation for the Difference Map==== |