Line 6,276: |
Line 6,276: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:center; width:60%" | + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:70%" |
| | | | | |
− | <math>\begin{matrix} | + | <math>\begin{array}{lllll} |
− | x & = & f(u, v) & = & \texttt{((} u \texttt{)(} v \texttt{))} | + | x |
| + | & = & f(u, v) |
| + | & = & \texttt{((} u \texttt{)(} v \texttt{))} |
| \\[8pt] | | \\[8pt] |
− | y & = & g(u, v) & = & \texttt{((} u \texttt{,} v \texttt{))} | + | y |
− | \end{matrix}</math> | + | & = & g(u, v) |
| + | & = & \texttt{((} u \texttt{,} v \texttt{))} |
| + | \end{array}</math> |
| |} | | |} |
| | | |
Line 6,291: |
Line 6,295: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:center; width:60%" | + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:70%" |
| | | | | |
− | <math>\begin{matrix} | + | <math>\begin{array}{lllll} |
− | (x, y) & = & F(u, v) & = & (\; \texttt{((} u \texttt{)(} v \texttt{))} \;,\; \texttt{((} u \texttt{,} v \texttt{))} \;) | + | (x, y) |
− | \end{matrix}</math> | + | & = & F(u, v) |
| + | & = & (\; \texttt{((} u \texttt{)(} v \texttt{))} \;,\; \texttt{((} u \texttt{,} v \texttt{))} \;) |
| + | \end{array}</math> |
| |} | | |} |
| | | |
Line 6,771: |
Line 6,777: |
| <br> | | <br> |
| | | |
− | <font face="courier new">
| + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:70%" |
− | {| align="center" border="1" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:96%" | |
| | | | | |
− | {| align="left" border="0" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" | + | <math>\begin{array}{lll} |
− | | width="8%" | E''G''<sub>''i''</sub>
| + | \mathrm{E}G_i |
− | | width="4%" | =
| + | & = & G_i (u + \mathrm{d}u, v + \mathrm{d}v) |
− | | width="88%" | ''G''<sub>''i''</sub>‹''u'' + d''u'', ''v'' + d''v''›
| + | \end{array}</math> |
| |} | | |} |
− | |}
| |
− | </font>
| |
| | | |
| <br> | | <br> |
Line 6,788: |
Line 6,791: |
| <br> | | <br> |
| | | |
− | <font face="courier new">
| + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:70%" |
− | {| align="center" border="1" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:96%" | |
| | | | | |
− | {| align="left" border="0" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" | + | <math>\begin{array}{lllll} |
− | | width="8%" | D''G''<sub>''i''</sub>
| + | \mathrm{D}G_i |
− | | width="4%" | =
| + | & = & G_i (u, v) |
− | | width="20%" | ''G''<sub>''i''</sub>‹''u'', ''v''›
| + | & + & \mathrm{E}G_i (u, v, \mathrm{d}u, \mathrm{d}v) |
− | | width="4%" | +
| + | \\[8pt] |
− | | width="64%" | E''G''<sub>''i''</sub>‹''u'', ''v'', d''u'', d''v''›
| + | & = & G_i (u, v) |
− | |-
| + | & + & G_i (u + \mathrm{d}u, v + \mathrm{d}v) |
− | | width="8%" |
| + | \end{array}</math> |
− | | width="4%" | =
| |
− | | width="20%" | ''G''<sub>''i''</sub>‹''u'', ''v''›
| |
− | | width="4%" | +
| |
− | | width="64%" | ''G''<sub>''i''</sub>‹''u'' + d''u'', ''v'' + d''v''›
| |
| |} | | |} |
− | |}
| |
− | </font>
| |
| | | |
| <br> | | <br> |
Line 6,817: |
Line 6,813: |
| <br> | | <br> |
| | | |
− | <font face="courier new">
| + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:70%" |
− | {| align="center" border="1" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:96%" | |
| | | | | |
− | {| align="left" border="0" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" | + | <math>\begin{array}{lll} |
− | | width="8%" | E''f''
| + | \mathrm{E}f |
− | | width="4%" | =
| + | & = & \texttt{((} u + \mathrm{d}u \texttt{)(} v + \mathrm{d}v \texttt{))} |
− | | width="88%" | ((''u'' + d''u'')(''v'' + d''v''))
| + | \\[8pt] |
− | |-
| + | \mathrm{E}g |
− | | width="8%" | E''g''
| + | & = & \texttt{((} u + \mathrm{d}u \texttt{,~} v + \mathrm{d}v \texttt{))} |
− | | width="4%" | =
| + | \end{array}</math> |
− | | width="88%" | ((''u'' + d''u'', ''v'' + d''v''))
| |
− | |}
| |
| |} | | |} |
− | </font>
| |
| | | |
| <br> | | <br> |
| | | |
− | <font face="courier new">
| + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:70%" |
− | {| align="center" border="1" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:96%" | |
| | | | | |
− | {| align="left" border="0" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" | + | <math>\begin{array}{lllll} |
− | | width="8%" | D''f''
| + | \mathrm{D}f |
− | | width="4%" | =
| + | & = & \texttt{((} u \texttt{)(} v \texttt{))} |
− | | width="20%" | ((''u'')(''v''))
| + | & + & \texttt{((} u + \mathrm{d}u \texttt{)(} v + \mathrm{d}v \texttt{))} |
− | | width="4%" | +
| + | \\[8pt] |
− | | width="64%" | ((''u'' + d''u'')(''v'' + d''v''))
| + | \mathrm{D}g |
− | |-
| + | & = & \texttt{((} u \texttt{,~} v \texttt{))} |
− | | width="8%" | D''g''
| + | & + & \texttt{((} u + \mathrm{d}u \texttt{,~} v + \mathrm{d}v \texttt{))} |
− | | width="4%" | =
| + | \end{array}</math> |
− | | width="20%" | ((''u'', ''v''))
| |
− | | width="4%" | +
| |
− | | width="64%" | ((''u'' + d''u'', ''v'' + d''v''))
| |
| |} | | |} |
− | |}
| |
− | </font>
| |
| | | |
| <br> | | <br> |
Line 7,441: |
Line 7,427: |
| <br> | | <br> |
| | | |
− | <p>[[Image:Diff Log Dyn Sys -- Figure 70-a -- Tangent Functor Diagram.gif|center]]</p>
| + | {| align="center" border="0" cellspacing="10" style="text-align:center; width:100%" |
− | <p><center><font size="+1">'''Figure 70-a. Tangent Functor Diagram for F‹u, v› = ‹((u)(v)), ((u, v))›'''</font></center></p>
| + | | [[Image:Diff Log Dyn Sys -- Figure 70-a -- Tangent Functor Diagram.gif|center]] |
| + | |- |
| + | | height="20px" valign="top" | <math>\text{Figure 70-a.} ~~ \text{Tangent Functor Diagram for}~ F(u, v) = (\; \texttt{((} u \texttt{)(} v \texttt{))} \;,\; \texttt{((} u \texttt{,} v \texttt{))} \;)</math> |
| + | |} |
| + | |
| + | <br> |
| | | |
| Figure 70-b shows another way to picture the action of the tangent functor on the logical transformation <math>F(u, v) = (\; \texttt{((} u \texttt{)(} v \texttt{))} \;,\; \texttt{((} u \texttt{,} v \texttt{))} \;).\!</math> | | Figure 70-b shows another way to picture the action of the tangent functor on the logical transformation <math>F(u, v) = (\; \texttt{((} u \texttt{)(} v \texttt{))} \;,\; \texttt{((} u \texttt{,} v \texttt{))} \;).\!</math> |