Difference between revisions of "User:Jon Awbrey/WORDPRESS"
MyWikiBiz, Author Your Legacy — Wednesday October 29, 2025
Jump to navigationJump to searchJon Awbrey (talk | contribs) (add user workspace) |
Jon Awbrey (talk | contribs) (→Work 2) |
||
| Line 1: | Line 1: | ||
==Work 2== | ==Work 2== | ||
| + | |||
| + | ===Array Test=== | ||
<pre> | <pre> | ||
| − | |||
| − | |||
$latex | $latex | ||
|x| = \left\{ | |x| = \left\{ | ||
| Line 13: | Line 13: | ||
\right. | \right. | ||
&fg=000000$ | &fg=000000$ | ||
| + | </pre> | ||
| + | <pre> | ||
$latex | $latex | ||
|x| = \left\{ | |x| = \left\{ | ||
| Line 23: | Line 25: | ||
\right. | \right. | ||
&fg=000000$ | &fg=000000$ | ||
| + | </pre> | ||
| + | <pre> | ||
$latex | $latex | ||
\begin{array}{*{9}{l}} | \begin{array}{*{9}{l}} | ||
| Line 32: | Line 36: | ||
Sierra & Tango & Uniform & Victor & Whiskey & X\text{-}ray & Yankee & Zulu & \varnothing | Sierra & Tango & Uniform & Victor & Whiskey & X\text{-}ray & Yankee & Zulu & \varnothing | ||
\end{array}&fg=000000$ | \end{array}&fg=000000$ | ||
| + | </pre> | ||
| − | + | ===Matrix Test=== | |
| + | <pre> | ||
$latex | $latex | ||
\begin{matrix} | \begin{matrix} | ||
| Line 43: | Line 49: | ||
Sierra & Tango & Uniform & Victor & Whiskey & X\text{-}ray & Yankee & Zulu & \varnothing | Sierra & Tango & Uniform & Victor & Whiskey & X\text{-}ray & Yankee & Zulu & \varnothing | ||
\end{matrix}&fg=000000$ | \end{matrix}&fg=000000$ | ||
| + | </pre> | ||
| − | + | ===Tabular Test 1=== | |
| + | <pre> | ||
$latex | $latex | ||
\begin{tabular}{lll} | \begin{tabular}{lll} | ||
| Line 58: | Line 66: | ||
Rome & Italy & 1908 | Rome & Italy & 1908 | ||
\end{tabular}&fg=000000$ | \end{tabular}&fg=000000$ | ||
| + | </pre> | ||
| − | + | ===Tabular Test 2=== | |
| + | <pre> | ||
$latex | $latex | ||
\begin{tabular}{|r|r|} | \begin{tabular}{|r|r|} | ||
| Line 78: | Line 88: | ||
\hline | \hline | ||
\end{tabular}&fg=000000$ | \end{tabular}&fg=000000$ | ||
| + | </pre> | ||
| − | + | ===Tabular Test 3=== | |
| + | <pre> | ||
$latex | $latex | ||
\begin{tabular}{|c|c|*{16}{c}|} | \begin{tabular}{|c|c|*{16}{c}|} | ||
| Line 101: | Line 113: | ||
\hline | \hline | ||
\end{tabular}&fg=000000$ | \end{tabular}&fg=000000$ | ||
| + | </pre> | ||
| − | + | ===Tabular Test 4=== | |
| + | <pre> | ||
$latex | $latex | ||
\begin{tabular}{|*{7}{c|}} | \begin{tabular}{|*{7}{c|}} | ||
| Line 233: | Line 247: | ||
\hline | \hline | ||
\end{tabular}&fg=000000$ | \end{tabular}&fg=000000$ | ||
| + | </pre> | ||
| − | + | ===Table Test 1=== | |
| + | <pre> | ||
<table border="0" style="border-width:0;width:100%;"> | <table border="0" style="border-width:0;width:100%;"> | ||
| Line 248: | Line 264: | ||
</table> | </table> | ||
| + | </pre> | ||
| − | + | ===Table Test 2=== | |
| − | |||
| − | |||
| + | <pre> | ||
<table align="left" border="0" style="border-width:0;"> | <table align="left" border="0" style="border-width:0;"> | ||
| Line 270: | Line 286: | ||
</table> | </table> | ||
| + | </pre> | ||
| − | + | ===Table Test 3=== | |
| + | <pre> | ||
<table align="center" border="0"> | <table align="center" border="0"> | ||
| Line 293: | Line 311: | ||
</table> | </table> | ||
| + | </pre> | ||
| − | + | ===Table Test 4=== | |
| + | <pre> | ||
<table align="center" border="0" style="border-width:0;text-align:center;"> | <table align="center" border="0" style="border-width:0;text-align:center;"> | ||
| Line 315: | Line 335: | ||
</table> | </table> | ||
| + | </pre> | ||
| − | + | ===Table Test 5=== | |
| + | <pre> | ||
<table align="center" border="0" style="text-align:center;"> | <table align="center" border="0" style="text-align:center;"> | ||
| Line 337: | Line 359: | ||
</table> | </table> | ||
| + | </pre> | ||
| − | + | ===Table Test 6=== | |
| + | <pre> | ||
<table align="center" border="0" style="text-align:center;"> | <table align="center" border="0" style="text-align:center;"> | ||
Revision as of 05:36, 2 June 2013
Work 2
Array Test
$latex
|x| = \left\{
\begin{array}{ll}
x & \text{if \( x \geq 0 \)};
\\
-x & \text{if \( x < 0 \)}.
\end{array}
\right.
&fg=000000$
$latex
|x| = \left\{
\begin{array}{ll}
x & \text{if}~ x \geq 0;
\\
-x & \text{if}~ x < 0.
\end{array}
\right.
&fg=000000$
$latex
\begin{array}{*{9}{l}}
Alpha & Bravo & Charlie & Delta & Echo & Foxtrot & Golf & Hotel & India
\\
Juliet & Kilo & Lima & Mike & November & Oscar & Papa & Quebec & Romeo
\\
Sierra & Tango & Uniform & Victor & Whiskey & X\text{-}ray & Yankee & Zulu & \varnothing
\end{array}&fg=000000$
Matrix Test
$latex
\begin{matrix}
Alpha & Bravo & Charlie & Delta & Echo & Foxtrot & Golf & Hotel & India
\\
Juliet & Kilo & Lima & Mike & November & Oscar & Papa & Quebec & Romeo
\\
Sierra & Tango & Uniform & Victor & Whiskey & X\text{-}ray & Yankee & Zulu & \varnothing
\end{matrix}&fg=000000$
Tabular Test 1
$latex
\begin{tabular}{lll}
Chicago & U.S.A. & 1893
\\
Z\"{u}rich & Switzerland & 1897
\\
Paris & France & 1900
\\
Heidelberg & Germany & 1904
\\
Rome & Italy & 1908
\end{tabular}&fg=000000$
Tabular Test 2
$latex
\begin{tabular}{|r|r|}
\hline
\( n \) & \( n! \) \\
\hline
1 & 1 \\
2 & 2 \\
3 & 6 \\
4 & 24 \\
5 & 120 \\
6 & 720 \\
7 & 5040 \\
8 & 40320 \\
9 & 362880 \\
10 & 3628800 \\
\hline
\end{tabular}&fg=000000$
Tabular Test 3
$latex
\begin{tabular}{|c|c|*{16}{c}|}
\multicolumn{18}{c}{Table 1. Higher Order Propositions \( (n = 1) \)} \\[4pt]
\hline
\( f \) & \( f \) &
\( m_{0} \) & \( m_{1} \) & \( m_{2} \) & \( m_{3} \) &
\( m_{4} \) & \( m_{5} \) & \( m_{6} \) & \( m_{7} \) &
\( m_{8} \) & \( m_{9} \) & \( m_{10} \) & \( m_{11} \) &
\( m_{12} \) & \( m_{13} \) & \( m_{14} \) & \( m_{15} \) \\[4pt]
\hline
\( f_0 \) & \texttt{()} &
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\[4pt]
\( f_1 \) & \texttt{(}\( x \)\texttt{)} &
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\[4pt]
\( f_2 \) & \( x \) &
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\[4pt]
\( f_3 \) & \texttt{(())} &
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\[4pt]
\hline
\end{tabular}&fg=000000$
Tabular Test 4
$latex
\begin{tabular}{|*{7}{c|}}
\multicolumn{7}{c}{\textbf{Table A1. Propositional Forms on Two Variables}} \\
\hline
\( L_1 \) &
\( L_2 \) &&
\( L_3 \) &
\( L_4 \) &
\( L_5 \) &
\( L_6 \) \\
\hline
& & \( x = \) & 1 1 0 0 & & & \\
& & \( y = \) & 1 0 1 0 & & & \\
\hline
\( f_{0} \) &
\( f_{0000} \) &&
0 0 0 0 &
\( (~) \) &
false &
\( 0 \)
\\
\( f_{1} \) &
\( f_{0001} \) &&
0 0 0 1 &
\( (x)(y) \) &
neither \( x \) nor \( y \) &
\( \lnot x \land \lnot y \)
\\
\( f_{2} \) &
\( f_{0010} \) &&
0 0 1 0 &
\( (x)\ y \) &
\( y \) without \( x \) &
\( \lnot x \land y \)
\\
\( f_{3} \) &
\( f_{0011} \) &&
0 0 1 1 &
\( (x) \) &
not \( x \) &
\( \lnot x \)
\\
\( f_{4} \) &
\( f_{0100} \) &&
0 1 0 0 &
\( x\ (y) \) &
\( x \) without \( y \) &
\( x \land \lnot y \)
\\
\( f_{5} \) &
\( f_{0101} \) &&
0 1 0 1 &
\( (y) \) &
not \( y \) &
\( \lnot y \)
\\
\( f_{6} \) &
\( f_{0110} \) &&
0 1 1 0 &
\( (x,\ y) \) &
\( x \) not equal to \( y \) &
\( x \ne y \)
\\
\( f_{7} \) &
\( f_{0111} \) &&
0 1 1 1 &
\( (x\ y) \) &
not both \( x \) and \( y \) &
\( \lnot x \lor \lnot y \)
\\
\hline
\( f_{8} \) &
\( f_{1000} \) &&
1 0 0 0 &
\( x\ y \) &
\( x \) and \( y \) &
\( x \land y \)
\\
\( f_{9} \) &
\( f_{1001} \) &&
1 0 0 1 &
\( ((x,\ y)) \) &
\( x \) equal to \( y \) &
\( x = y \)
\\
\( f_{10} \) &
\( f_{1010} \) &&
1 0 1 0 &
\( y \) &
\( y \) &
\( y \)
\\
\( f_{11} \) &
\( f_{1011} \) &&
1 0 1 1 &
\( (x\ (y)) \) &
not \( x \) without \( y \) &
\( x \Rightarrow y \)
\\
\( f_{12} \) &
\( f_{1100} \) &&
1 1 0 0 &
\( x \) &
\( x \) &
\( x \)
\\
\( f_{13} \) &
\( f_{1101} \) &&
1 1 0 1 &
\( ((x)\ y) \) &
not \( y \) without \( x \) &
\( x \Leftarrow y \)
\\
\( f_{14} \) &
\( f_{1110} \) &&
1 1 1 0 &
\( ((x)(y)) \) &
\( x \) or \( y \) &
\( x \lor y \)
\\
\( f_{15} \) &
\( f_{1111} \) &&
1 1 1 1 &
\( ((~)) \) &
true &
\( 1 \)
\\
\hline
\end{tabular}&fg=000000$
Table Test 1
<table border="0" style="border-width:0;width:100%;"> <tr> <td style="border-top:1px solid white;width:35%;"></td> <td style="border-top:1px solid white;width:65%;"> Can we ever become what we weren’t in eternity? Can we ever learn what we weren’t born knowing? Can we ever share what we never had in common?</td> </tr> </table>
Table Test 2
<table align="left" border="0" style="border-width:0;"> <tr> <td style="border-top:1px solid white;"> <p>Everything considered, a determined soul will always manage.</p></td> <td style="border-top:1px solid white;">(41)</td> </tr> <tr> <td style="border-top:1px solid white;"> <p>To a man devoid of blinders, there is no finer sight than that of the intelligence at grips with a reality that transcends it.</p></td> <td style="border-top:1px solid white;">(55)</td> </tr> </table>
Table Test 3
<table align="center" border="0"> <tr> <td> <br> <p>Everything considered, a determined soul will always manage.</p></td> <td><p>(41)</p></td> </tr> <tr> <td> <br> <p>To a man devoid of blinders, there is no finer sight than that of the intelligence at grips with a reality that transcends it.</p></td> <td><p>(55)</p></td> </tr> </table>
Table Test 4
<table align="center" border="0" style="border-width:0;text-align:center;"> <tr> <td style="border-top:1px solid white;"> <a href="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure1visibleframe1.jpg" title="Logical Graph Figure 1"> <img src="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure1visibleframe1.jpg" alt="()()=()" width="500" height="168" border="0"></a></td> <td style="border-top:1px solid white;">(1)</td> </tr> <tr> <td style="border-top:1px solid white;"> <a href="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure2visibleframe1.jpg" title="Logical Graph Figure 2"> <img src="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure2visibleframe1.jpg" alt="(())= " width="500" height="168" border="0"></a></td> <td style="border-top:1px solid white;">(2)</td> </tr> </table>
Table Test 5
<table align="center" border="0" style="text-align:center;"> <tr> <td style="padding:10px;"> <a href="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure1visibleframe1.jpg" title="Logical Graph Figure 1"> <img src="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure1visibleframe1.jpg" alt="()()=()" align="center" width="500" height="168" /></a></td> <td style="padding:80px 10px;">(1)</td> </tr> <tr> <td style="padding:10px;"> <a href="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure2visibleframe1.jpg" title="Logical Graph Figure 2"> <img src="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure2visibleframe1.jpg" alt="(())= " align="center" width="500" height="168" /></a></td> <td style="padding:80px 10px;">(2)</td> </tr> </table>
Table Test 6
<table align="center" border="0" style="text-align:center;">
<caption><font size="+2">$latex \text{Table 1.} ~~ \text{Higher Order Propositions} ~ (n = 1) $</font></caption>
<tr>
<td style="border-bottom:2px solid black;">$latex m_{0} $</td>
<td style="border-bottom:2px solid black;">$latex m_{1} $</td>
<td style="border-bottom:2px solid black;">$latex m_{2} $</td>
<td style="border-bottom:2px solid black;">$latex m_{3} $</td>
<td style="border-bottom:2px solid black;">$latex m_{4} $</td>
<td style="border-bottom:2px solid black;">$latex m_{5} $</td>
<td style="border-bottom:2px solid black;">$latex m_{6} $</td>
<td style="border-bottom:2px solid black;">$latex m_{7} $</td>
</tr>
<tr>
<td style="background:white;color:black;">0</td>
<td style="background:black;color:white;">1</td>
<td style="background:white;color:black;">0</td>
<td style="background:black;color:white;">1</td>
<td style="background:white;color:black;">0</td>
<td style="background:black;color:white;">1</td>
<td style="background:white;color:black;">0</td>
<td style="background:black;color:white;">1</td>
</tr>
<tr>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:black;color:white;">1</td>
<td style="background:black;color:white;">1</td>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:black;color:white;">1</td>
<td style="background:black;color:white;">1</td>
</tr>
<tr>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:black;color:white;">1</td>
<td style="background:black;color:white;">1</td>
<td style="background:black;color:white;">1</td>
<td style="background:black;color:white;">1</td>
</tr>
<tr>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
</tr>
</table>