Changes

Line 3,045: Line 3,045:  
<p>The set of ''linear functions'' <math>f : \underline{X} \to \mathbb{B}\!</math> has a cardinality of <math>2^n\!</math> and is known as the ''dual space'' <math>\underline{X}^{*}\!</math> in vector space contexts.  In formal language contexts, in order to avoid conflicts with the use of the ''kleene star'' operator, it needs to be given an alternate notation:</p>
 
<p>The set of ''linear functions'' <math>f : \underline{X} \to \mathbb{B}\!</math> has a cardinality of <math>2^n\!</math> and is known as the ''dual space'' <math>\underline{X}^{*}\!</math> in vector space contexts.  In formal language contexts, in order to avoid conflicts with the use of the ''kleene star'' operator, it needs to be given an alternate notation:</p>
   −
<p><math>\underline{X}^{+\!\to} = (\underline{X} ~+\!\!\to \mathbb{B}) = \{ f : \underline{X} ~+\!\!\to \mathbb{B} \}.\!</math></p></li>
+
<p><math>\underline{X}^{\oplus\!\to} = (\underline{X} ~\oplus\!\!\to \mathbb{B}) = \{ f : \underline{X} ~\oplus\!\!\to \mathbb{B} \}.\!</math></p></li>
    
<li>
 
<li>
<p>The set of ''singular functions'' <math>f : \underline{X} \to \mathbb{B}\!</math> has a cardinality of <math>2^n\!</math> and is notated as follows:</p>
+
<p>The set of ''positive functions'' <math>f : \underline{X} \to \mathbb{B}\!</math> has a cardinality of <math>2^n\!</math> and is notated as follows:
   −
<p><math>\underline{X}^{!\!\to} = (\underline{X} ~!\!\!\to \mathbb{B}) = \{ f : \underline{X} ~!\!\!\to \mathbb{B} \}.\!</math></p></li>
+
<p><math>\underline{X}^{\otimes\!\to} = (\underline{X} ~\otimes\!\!\to \mathbb{B}) = \{ f : \underline{X} ~\otimes\!\!\to \mathbb{B} \}.\!</math></p></li>
    
<li>
 
<li>
<p>The set of ''positive functions'' <math>f : \underline{X} \to \mathbb{B}\!</math> has a cardinality of <math>2^n\!</math> and is notated as follows:
+
<p>The set of ''singular functions'' <math>f : \underline{X} \to \mathbb{B}\!</math> has a cardinality of <math>2^n\!</math> and is notated as follows:</p>
   −
<p><math>\underline{X}^{\otimes\!\to} = (\underline{X} ~\otimes\!\!\to \mathbb{B}) = \{ f : \underline{X} ~\otimes\!\!\to \mathbb{B} \}.\!</math></p></li>
+
<p><math>\underline{X}^{\odot\!\to} = (\underline{X} ~\odot\!\!\to \mathbb{B}) = \{ f : \underline{X} ~\odot\!\!\to \mathbb{B} \}.\!</math></p></li>
    
</ol></ol>
 
</ol></ol>
12,089

edits