| Line 667: | 
Line 667: | 
|   | </pre>  |   | </pre>  | 
|   |  |   |  | 
| − | =====1.3.12.2.  Derived Equivalence Relations=====  | + | =====1.3.12.2.  Derived Equivalence Relations <big>✔</big>=====  | 
| − |    |   | 
| − | The uses of the equal sign for denoting equations or equivalences are recalled and extended in the following ways:
  |   | 
| − |    |   | 
| − | 1.  If E is an arbitrary equivalence relation,
  |   | 
| − |    |   | 
| − | then the equation "x =E y" means that <x, y> C E.
  |   | 
| − |    |   | 
| − | 2.  If R is a sign relation such that RSI is a SER on S = I,
  |   | 
| − |    |   | 
| − | then the semiotic equation "x =R y" means that <x, y> C RSI.
  |   | 
| − |    |   | 
| − | 3.  If R is a sign relation such that F is its DER on S = I,
  |   | 
| − |    |   | 
| − | then the denotative equation "x =R y" means that <x, y> C F,
  |   | 
| − |    |   | 
| − | in other words, that Den(R, x) = Den(R, y).
  |   | 
| − |    |   | 
| − | The uses of square brackets for denoting equivalence classes are recalled and extended in the following ways:
  |   | 
| − |    |   | 
| − | 1.  If E is an arbitrary equivalence relation,
  |   | 
| − |    |   | 
| − | then "[x]E" denotes the equivalence class of x under E.
  |   | 
| − |    |   | 
| − | 2.  If R is a sign relation such that Con(R) is a SER on S = I,
  |   | 
| − |    |   | 
| − | then "[x]R" denotes the SEC of x under Con(R).
  |   | 
| − |    |   | 
| − | 3.  If R is a sign relation such that Der(R) is a DER on S = I,
  |   | 
| − |    |   | 
| − | then "[x]R" denotes the DEC of x under Der(R).
  |   | 
| − |    |   | 
| − | By applying the form of Fact 1 to the special case where X = Den(R, x) and Y = Den(R, y), one obtains the following facts.
  |   | 
| − |    |   | 
| − | <pre>
  |   | 
| − | Fact 2.1
  |   | 
| − |    |   | 
| − | If	R	c	OxSxI,
  |   | 
| − |    |   | 
| − | then the following are identical subsets of SxI:
  |   | 
| − |    |   | 
| − | F2.1a.	DerR		:D13a
  |   | 
| − |    |   | 
| − | 					::
  |   | 
| − |    |   | 
| − | F2.1b.	Der(R)	:D13b
  |   | 
| − |    |   | 
| − | 					::
  |   | 
| − |    |   | 
| − | F2.1c.	{<x, y> C SxI :
  |   | 
| − |    |   | 
| − | 		Den(R, x) = Den(R, y)
  |   | 
| − |    |   | 
| − | 	}				:D13c
  |   | 
| − |    |   | 
| − | 					:R9a
  |   | 
| − |    |   | 
| − | 					::
  |   | 
| − |    |   | 
| − | F2.1d.	{<x, y> C SxI :
  |   | 
| − |    |   | 
| − | 		{Den(R, x)} = {Den(R, y)}
  |   | 
| − |    |   | 
| − | 	}				:R9b
  |   | 
| − |    |   | 
| − | 					::
  |   | 
| − |    |   | 
| − | F2.1e.	{<x, y> C SxI :
  |   | 
| − |    |   | 
| − | 		for all o C O
  |   | 
| − |    |   | 
| − | 			{Den(R, x)}(o) = {Den(R, y)}(o)
  |   | 
| − |    |   | 
| − | 	}				:R9c
  |   | 
| − |    |   | 
| − | 					::
  |   | 
| − |    |   | 
| − | F2.1f.	{<x, y> C SxI :	
  |   | 
| − |    |   | 
| − | 		Conj(o C O)
  |   | 
| − |    |   | 
| − | 			{Den(R, x)}(o) = {Den(R, y)}(o)
  |   | 
| − |    |   | 
| − | 	}				:R9d
  |   | 
| − |    |   | 
| − | 					::
  |   | 
| − |    |   | 
| − | F2.1g.	{<x, y> C SxI :
  |   | 
| − |    |   | 
| − | 		Conj(o C O)
  |   | 
| − |    |   | 
| − | 			(( {Den(R, x)}(o) , {Den(R, y)}(o) ))
  |   | 
| − |    |   | 
| − | 	}				:R9e
  |   | 
| − |    |   | 
| − | 					::
  |   | 
| − |    |   | 
| − | F2.1h.	{<x, y> C SxI :
  |   | 
| − |    |   | 
| − | 		Conj(o C O)
  |   | 
| − |    |   | 
| − | 			(( {Den(R, x)} , {Den(R, y)} ))$(o)
  |   | 
| − |    |   | 
| − | 	}				:R9f
  |   | 
| − |    |   | 
| − | 					:D12e
  |   | 
| − |    |   | 
| − | 					::
  |   | 
| − |    |   | 
| − | F2.1i.	{<x, y> C SxI :
  |   | 
| − |    |   | 
| − | 		Conj(o C O)
  |   | 
| − |    |   | 
| − | 			(( {ROS.x} , {ROS.y} ))$(o)
  |   | 
| − |    |   | 
| − | 	}				:D12a
  |   | 
| − | </pre>  |   | 
| − |    |   | 
| − | <pre>
  |   | 
| − | Fact 2.2
  |   | 
| − |    |   | 
| − | If	R	c	OxSxI,
  |   | 
| − |    |   | 
| − | then the following are equivalent:
  |   | 
| − |    |   | 
| − | F2.2a.	DerR	=	{<x, y> C SxI :
  |   | 
| − |    |   | 
| − | 				Conj(o C O)
  |   | 
| − |    |   | 
| − | 					{Den(R, x)}(o) =
  |   | 
| − |    |   | 
| − | 					{Den(R, y)}(o)
  |   | 
| − |    |   | 
| − | 			}						:R11a
  |   | 
| − | 								::
  |   | 
| − |    |   | 
| − | F2.2b.	{DerR}	=	{	{<x, y> C SxI :
  |   | 
| − |    |   | 
| − | 					Conj(o C O)
  |   | 
| − |    |   | 
| − | 						{Den(R, x)}(o) =
  |   | 
| − |    |   | 
| − | 						{Den(R, y)}(o)
  |   | 
| − |    |   | 
| − | 				}
  |   | 
| − |    |   | 
| − | 			}						:R11b
  |   | 
| − |    |   | 
| − | 									::
  |   | 
| − |    |   | 
| − | F2.2c.	{DerR}	c	SxIxB
  |   | 
| − |    |   | 
| − | 	:
  |   | 
| − |    |   | 
| − | 	{DerR}	=	{<x, y, v> C SxIxB :
  |   | 
| − |    |   | 
| − | 				v =
  |   | 
| − |    |   | 
| − | 					[	Conj(o C O)
  |   | 
| − |    |   | 
| − | 							{Den(R, x)}(o) =
  |   | 
| − |    |   | 
| − | 							{Den(R, y)}(o)
  |   | 
| − |    |   | 
| − | 					]
  |   | 
| − |    |   | 
| − | 			}						:R11c
  |   | 
| − |    |   | 
| − | 									::
  |   | 
| − |    |   | 
| − | F2.2d.	{DerR}	=	{<x, y, v> C SxIxB :
  |   | 
| − |    |   | 
| − | 				v =
  |   | 
| − |    |   | 
| − | 					Conj(o C O)
  |   | 
| − |    |   | 
| − | 						[	{Den(R, x)}(o) =
  |   | 
| − |    |   | 
| − | 							{Den(R, y)}(o)
  |   | 
| − |    |   | 
| − | 						]
  |   | 
| − |    |   | 
| − | 			}						:Log
  |   | 
| − |    |   | 
| − | F2.2e.	{DerR}	=	{<x, y, v> C SxIxB :
  |   | 
| − |    |   | 
| − | 				v =
  |   | 
| − |    |   | 
| − | 					Conj(o C O)
  |   | 
| − |    |   | 
| − | 						((	{Den(R, x)}(o),
  |   | 
| − |    |   | 
| − | 								{Den(R, y)}(o)
  |   | 
| − |    |   | 
| − | 						))
  |   | 
| − |    |   | 
| − | 			}						:Log
  |   | 
| − |    |   | 
| − | F2.2f.	{DerR}	=	{<x, y, v> C SxIxB :
  |   | 
| − |    |   | 
| − | 				v =
  |   | 
| − |    |   | 
| − | 					Conj(o C O)
  |   | 
| − |    |   | 
| − | 						((	{Den(R, x)},
  |   | 
| − |    |   | 
| − | 								{Den(R, y)}
  |   | 
| − |    |   | 
| − | 						))$(o)
  |   | 
| − |    |   | 
| − | 			}						:$
  |   | 
| − | </pre>
  |   | 
| − |    |   | 
| − | <pre>
  |   | 
| − | Fact 2.3
  |   | 
| − |    |   | 
| − | If	R	c	OxSxI,
  |   | 
| − |    |   | 
| − | then the following are equivalent:
  |   | 
| − |    |   | 
| − | F2.3a.	DerR	=	{<x, y> C SxI :
  |   | 
| − |    |   | 
| − | 				Conj(o C O)
  |   | 
| − |    |   | 
| − | 					{Den(R, x)}(o) =
  |   | 
| − |    |   | 
| − | 					{Den(R, y)}(o)
  |   | 
| − |    |   | 
| − | 			}				:R11a
  |   | 
| − |    |   | 
| − | 							::
  |   | 
| − |    |   | 
| − | F2.3b.	{DerR}	:	SxI -> B
  |   | 
| − |    |   | 
| − | 	:
  |   | 
| − |    |   | 
| − | 	{DerR}(x, y)	=	[	Conj(o C O)
  |   | 
| − |    |   | 
| − | 					{Den(R, x)}(o) =
  |   | 
| − |    |   | 
| − | 					{Den(R, y)}(o)
  |   | 
| − |    |   | 
| − | 			]				:R11d
  |   | 
| − |    |   | 
| − | 							::
  |   | 
| − |    |   | 
| − | F2.3c.	{DerR}(x, y)	=	Conj(o C O)
  |   | 
| − |    |   | 
| − | 				[	{Den(R, x)}(o) =
  |   | 
| − |    |   | 
| − | 					{Den(R, y)}(o)
  |   | 
| − |    |   | 
| − | 				]			:Log
  |   | 
| − |    |   | 
| − | 							::
  |   | 
| − |    |   | 
| − | F2.3d.	{DerR}(x, y)	=	Conj(o C O)
  |   | 
| − |    |   | 
| − | 				[	{DenR}(o, x) =
  |   | 
| − |    |   | 
| − | 					{DenR}(o, y)
  |   | 
| − |    |   | 
| − | 				]			:Def
  |   | 
| − |    |   | 
| − | 							::
  |   | 
| − |    |   | 
| − | F2.3e.	{DerR}(x, y)	=	Conj(o C O)
  |   | 
| − |    |   | 
| − | 				((	{DenR}(o, x),
  |   | 
| − |    |   | 
| − | 						{DenR}(o, y)
  |   | 
| − |    |   | 
| − | 				))		:Log
  |   | 
| − |    |   | 
| − | 							:D10b
  |   | 
| − |    |   | 
| − | 							::
  |   | 
| − |    |   | 
| − | F2.3f.	{DerR}(x, y)	=	Conj(o C O)
  |   | 
| − |    |   | 
| − | 				((	{ROS}(o, x),
  |   | 
| − |    |   | 
| − | 						{ROS}(o, y)
  |   | 
| − |    |   | 
| − | 				))		:D10a
  |   | 
| − | </pre>
  |   | 
|   |  |   |  | 
|   | =====1.3.12.3.  Digression on Derived Relations <big>✔</big>=====  |   | =====1.3.12.3.  Digression on Derived Relations <big>✔</big>=====  |