| Line 6: |
Line 6: |
| | | | |
| | With this interpretation in mind we note the following correspondences between classical quantifications and higher order indicator functions: | | With this interpretation in mind we note the following correspondences between classical quantifications and higher order indicator functions: |
| | + | |
| | + | <br> |
| | | | |
| | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
| Line 36: |
Line 38: |
| | | | |
| | <pre> | | <pre> |
| − | <table align="center" border="1" cellpadding="8" cellspacing="0" width="80%">
| |
| − |
| |
| − | <caption><font size="+2"><math>\text{Table 7.} ~~ \text{Syllogistic Premisses as Higher Order Indicator Functions}</math></font></caption>
| |
| − |
| |
| − | <tr>
| |
| − | <td align="center"><math>\operatorname{A}</math></td>
| |
| − | <td><math>\text{Absolute}</math></td>
| |
| − | <td><math>\text{Universal Affirmative}</math></td>
| |
| − | <td align="center"><math>All ~ u ~ is ~ v</math></td>
| |
| − | <td><math>Indicator of u ~ \texttt{(} v \texttt{)} = 0</math></td></tr>
| |
| − |
| |
| − | <tr>
| |
| − | <td align="center"><math>\operatorname{E}</math></td>
| |
| − | <td><math>Exclusive</math></td>
| |
| − | <td><math>Universal Negative</math></td>
| |
| − | <td align="center"><math>All ~ u ~ is ~ \texttt{(} v \texttt{)}</math></td>
| |
| − | <td><math>Indicator of ~ u ~ \cdot ~ v = 0</math></td></tr>
| |
| − |
| |
| − | <tr>
| |
| − | <td align="center"><math>\operatorname{I}</math></td>
| |
| − | <td><math>Indefinite</math></td>
| |
| − | <td><math>Particular Affirmative</math></td>
| |
| − | <td align="center"><math>Some ~ u ~ is ~ v</math></td>
| |
| − | <td><math>Indicator of ~ u ~ \cdot ~ v = 1</math></td></tr>
| |
| − |
| |
| − | <tr>
| |
| − | <td align="center"><math>\operatorname{O}</math></td>
| |
| − | <td><math>Obtrusive</math></td>
| |
| − | <td><math>Particular Negative</math></td>
| |
| − | <td align="center"><math>Some ~ u ~ is ~ \texttt{(} v \texttt{)}</math></td>
| |
| − | <td><math>Indicator of ~ u ~ \texttt{(} v \texttt{)} = 1</math></td></tr>
| |
| − |
| |
| − | </table></font>
| |
| − |
| |
| − | <br>
| |
| − |
| |
| | The following Tables develop these ideas in more detail. | | The following Tables develop these ideas in more detail. |
| | | | |