Difference between revisions of "Directory:Jon Awbrey/Papers/Differential Logic : Introduction"
Jon Awbrey (talk | contribs) (reorg) |
Jon Awbrey (talk | contribs) (reorg) |
||
Line 2,073: | Line 2,073: | ||
<br> | <br> | ||
− | == | + | ==Operational Representation== |
− | If you think that I linger in the realm of logical difference calculus out of sheer vacillation about getting down to the differential proper, it is probably out of a prior expectation that you derive from the art or the long-engrained practice of real analysis. But the fact is that ordinary calculus only rushes on to the sundry orders of approximation because the strain of comprehending the full import of <math>\operatorname{E}</math> and <math>\operatorname{D}</math> at once whelm over its discrete and finite powers to grasp them. But here, in the fully serene idylls of | + | If you think that I linger in the realm of logical difference calculus out of sheer vacillation about getting down to the differential proper, it is probably out of a prior expectation that you derive from the art or the long-engrained practice of real analysis. But the fact is that ordinary calculus only rushes on to the sundry orders of approximation because the strain of comprehending the full import of <math>\operatorname{E}</math> and <math>\operatorname{D}</math> at once whelm over its discrete and finite powers to grasp them. But here, in the fully serene idylls of [[zeroth order logic]], we find ourselves fit with the compass of a wit that is all we'd ever need to explore their effects with care. |
So let us do just that. | So let us do just that. | ||
Line 2,454: | Line 2,454: | ||
More concretely viewed, the group as a whole pushes the set of sixteen propositions around in such a way that they fall into seven natural classes, called ''orbits''. One says that the orbits are preserved by the action of the group. There is an ''Orbit Lemma'' of immense utility to "those who count" which, depending on your upbringing, you may associate with the names of Burnside, Cauchy, Frobenius, or some subset or superset of these three, vouching that the number of orbits is equal to the mean number of fixed points, in other words, the total number of points (in our case, propositions) that are left unmoved by the separate operations, divided by the order of the group. In this instance, <math>\operatorname{T}_{00}</math> operates as the group identity, fixing all 16 propositions, while the other three group elements fix 4 propositions each, and so we get: <math>\text{Number of orbits}~ = (4 + 4 + 4 + 16) \div 4 = 7.</math> Amazing! | More concretely viewed, the group as a whole pushes the set of sixteen propositions around in such a way that they fall into seven natural classes, called ''orbits''. One says that the orbits are preserved by the action of the group. There is an ''Orbit Lemma'' of immense utility to "those who count" which, depending on your upbringing, you may associate with the names of Burnside, Cauchy, Frobenius, or some subset or superset of these three, vouching that the number of orbits is equal to the mean number of fixed points, in other words, the total number of points (in our case, propositions) that are left unmoved by the separate operations, divided by the order of the group. In this instance, <math>\operatorname{T}_{00}</math> operates as the group identity, fixing all 16 propositions, while the other three group elements fix 4 propositions each, and so we get: <math>\text{Number of orbits}~ = (4 + 4 + 4 + 16) \div 4 = 7.</math> Amazing! | ||
− | |||
− | |||
{| align="center" cellpadding="0" cellspacing="0" width="90%" | {| align="center" cellpadding="0" cellspacing="0" width="90%" | ||
Line 2,555: | Line 2,553: | ||
More on the pragmatic maxim as a representation principle later. | More on the pragmatic maxim as a representation principle later. | ||
− | |||
− | |||
The above-mentioned fact about the regular representations of a group is universally known as Cayley's Theorem, typically stated in the following form: | The above-mentioned fact about the regular representations of a group is universally known as Cayley's Theorem, typically stated in the following form: | ||
Line 2,571: | Line 2,567: | ||
This idea of contextual definition by way of conduct transforming operators is basically the same as Jeremy Bentham's notion of ''paraphrasis'', a "method of accounting for fictions by explaining various purported terms away" (Quine, in Van Heijenoort, ''From Frege to Gödel'', p. 216). Today we'd call these constructions ''term models''. This, again, is the big idea behind Schönfinkel's combinators <math>\operatorname{S}, \operatorname{K}, \operatorname{I},</math> and hence of lambda calculus, and I reckon you know where that leads. | This idea of contextual definition by way of conduct transforming operators is basically the same as Jeremy Bentham's notion of ''paraphrasis'', a "method of accounting for fictions by explaining various purported terms away" (Quine, in Van Heijenoort, ''From Frege to Gödel'', p. 216). Today we'd call these constructions ''term models''. This, again, is the big idea behind Schönfinkel's combinators <math>\operatorname{S}, \operatorname{K}, \operatorname{I},</math> and hence of lambda calculus, and I reckon you know where that leads. | ||
− | |||
− | |||
The next few excursions in this series will provide a scenic tour of various ideas in group theory that will turn out to be of constant guidance in several of the settings that are associated with our topic. | The next few excursions in this series will provide a scenic tour of various ideas in group theory that will turn out to be of constant guidance in several of the settings that are associated with our topic. | ||
Line 2,667: | Line 2,661: | ||
I think this much will serve to fix notation and set up the remainder of the discussion. | I think this much will serve to fix notation and set up the remainder of the discussion. | ||
− | |||
− | |||
In Peirce's time, and even in some circles of mathematics today, the information indicated by the elementary relatives <math>(i\!:\!j),</math> as the indices <math>i, j\!</math> range over the universe of discourse, would be referred to as the ''umbral elements'' of the algebraic operation represented by the matrix, though I seem to recall that Peirce preferred to call these terms the "ingredients". When this ordered basis is understood well enough, one will tend to drop any mention of it from the matrix itself, leaving us nothing but these bare bones: | In Peirce's time, and even in some circles of mathematics today, the information indicated by the elementary relatives <math>(i\!:\!j),</math> as the indices <math>i, j\!</math> range over the universe of discourse, would be referred to as the ''umbral elements'' of the algebraic operation represented by the matrix, though I seem to recall that Peirce preferred to call these terms the "ingredients". When this ordered basis is understood well enough, one will tend to drop any mention of it from the matrix itself, leaving us nothing but these bare bones: | ||
Line 2,717: | Line 2,709: | ||
This is consistent with the convention that Peirce uses in the paper "On a Class of Multiple Algebras" (CP 3.324–327). | This is consistent with the convention that Peirce uses in the paper "On a Class of Multiple Algebras" (CP 3.324–327). | ||
− | |||
− | |||
We've been exploring the applications of a certain technique for clarifying abstruse concepts, a rough-cut version of the pragmatic maxim that I've been accustomed to refer to as the ''operationalization'' of ideas. The basic idea is to replace the question of ''What it is'', which modest people comprehend is far beyond their powers to answer definitively any time soon, with the question of ''What it does'', which most people know at least a modicum about. | We've been exploring the applications of a certain technique for clarifying abstruse concepts, a rough-cut version of the pragmatic maxim that I've been accustomed to refer to as the ''operationalization'' of ideas. The basic idea is to replace the question of ''What it is'', which modest people comprehend is far beyond their powers to answer definitively any time soon, with the question of ''What it does'', which most people know at least a modicum about. | ||
Line 2,870: | Line 2,860: | ||
If the ante-rep looks the same as the post-rep, now that I'm writing them in the same dialect, that is because <math>V_4\!</math> is abelian (commutative), and so the two representations have the very same effects on each point of their bearing. | If the ante-rep looks the same as the post-rep, now that I'm writing them in the same dialect, that is because <math>V_4\!</math> is abelian (commutative), and so the two representations have the very same effects on each point of their bearing. | ||
− | |||
− | |||
So long as we're in the neighborhood, we might as well take in some more of the sights, for instance, the smallest example of a non-abelian (non-commutative) group. This is a group of six elements, say, <math>G = \{ \operatorname{e}, \operatorname{f}, \operatorname{g}, \operatorname{h}, \operatorname{i}, \operatorname{j} \},\!</math> with no relation to any other employment of these six symbols being implied, of course, and it can be most easily represented as the permutation group on a set of three letters, say, <math>X = \{ a, b, c \},\!</math> usually notated as <math>G = \operatorname{Sym}(X)</math> or more abstractly and briefly, as <math>\operatorname{Sym}(3)</math> or <math>S_3.\!</math> The next Table shows the intended correspondence between abstract group elements and the permutation or substitution operations in <math>\operatorname{Sym}(X).</math> | So long as we're in the neighborhood, we might as well take in some more of the sights, for instance, the smallest example of a non-abelian (non-commutative) group. This is a group of six elements, say, <math>G = \{ \operatorname{e}, \operatorname{f}, \operatorname{g}, \operatorname{h}, \operatorname{i}, \operatorname{j} \},\!</math> with no relation to any other employment of these six symbols being implied, of course, and it can be most easily represented as the permutation group on a set of three letters, say, <math>X = \{ a, b, c \},\!</math> usually notated as <math>G = \operatorname{Sym}(X)</math> or more abstractly and briefly, as <math>\operatorname{Sym}(3)</math> or <math>S_3.\!</math> The next Table shows the intended correspondence between abstract group elements and the permutation or substitution operations in <math>\operatorname{Sym}(X).</math> | ||
Line 2,948: | Line 2,936: | ||
By the way, we will meet with the symmetric group <math>S_3\!</math> again when we return to take up the study of Peirce's early paper "On a Class of Multiple Algebras" (CP 3.324–327), and also his late unpublished work "The Simplest Mathematics" (1902) (CP 4.227–323), with particular reference to the section that treats of "Trichotomic Mathematics" (CP 4.307–323). | By the way, we will meet with the symmetric group <math>S_3\!</math> again when we return to take up the study of Peirce's early paper "On a Class of Multiple Algebras" (CP 3.324–327), and also his late unpublished work "The Simplest Mathematics" (1902) (CP 4.227–323), with particular reference to the section that treats of "Trichotomic Mathematics" (CP 4.307–323). | ||
− | |||
− | |||
By way of collecting a short-term pay-off for all the work that we did on the regular representations of the Klein 4-group <math>V_4,\!</math> let us write out as quickly as possible in ''relative form'' a minimal budget of representations for the symmetric group on three letters, <math>\operatorname{Sym}(3).</math> After doing the usual bit of compare and contrast among the various representations, we will have enough concrete material beneath our abstract belts to tackle a few of the presently obscured details of Peirce's early "Algebra + Logic" papers. | By way of collecting a short-term pay-off for all the work that we did on the regular representations of the Klein 4-group <math>V_4,\!</math> let us write out as quickly as possible in ''relative form'' a minimal budget of representations for the symmetric group on three letters, <math>\operatorname{Sym}(3).</math> After doing the usual bit of compare and contrast among the various representations, we will have enough concrete material beneath our abstract belts to tackle a few of the presently obscured details of Peirce's early "Algebra + Logic" papers. | ||
Line 2,991: | Line 2,977: | ||
I have without stopping to think about it written out this natural representation of <math>S_3\!</math> in the style that comes most naturally to me, to wit, the "right" way, whereby an ordered pair configured as <math>x\!:\!y</math> constitutes the turning of <math>x\!</math> into <math>y.\!</math> It is possible that the next time we check in with CSP we will have to adjust our sense of direction, but that will be an easy enough bridge to cross when we come to it. | I have without stopping to think about it written out this natural representation of <math>S_3\!</math> in the style that comes most naturally to me, to wit, the "right" way, whereby an ordered pair configured as <math>x\!:\!y</math> constitutes the turning of <math>x\!</math> into <math>y.\!</math> It is possible that the next time we check in with CSP we will have to adjust our sense of direction, but that will be an easy enough bridge to cross when we come to it. | ||
− | |||
− | |||
To construct the regular representations of <math>S_3,\!</math> we begin with the data of its operation table: | To construct the regular representations of <math>S_3,\!</math> we begin with the data of its operation table: | ||
Line 3,127: | Line 3,111: | ||
If the ante-rep looks different from the post-rep, it is just as it should be, as <math>S_3\!</math> is non-abelian (non-commutative), and so the two representations differ in the details of their practical effects, though, of course, being representations of the same abstract group, they must be isomorphic. | If the ante-rep looks different from the post-rep, it is just as it should be, as <math>S_3\!</math> is non-abelian (non-commutative), and so the two representations differ in the details of their practical effects, though, of course, being representations of the same abstract group, they must be isomorphic. | ||
− | |||
− | |||
{| cellpadding="2" cellspacing="2" width="100%" | {| cellpadding="2" cellspacing="2" width="100%" | ||
Line 3,145: | Line 3,127: | ||
We made the observation that the shift operators <math>\{ \operatorname{E}_{ij} \}</math> form a transformation group that acts on the set of propositions of the form <math>f : \mathbb{B} \times \mathbb{B} \to \mathbb{B}.</math> Group theory is a very attractive subject, but it did not draw us so far from our intended course as one might initially think. For one thing, groups, especially the groups that are named after the Norwegian mathematician [http://www-history.mcs.st-andrews.ac.uk/Biographies/Lie.html Marius Sophus Lie (1842–1899)], have turned out to be of critical utility in the solution of differential equations. For another thing, group operations provide us with an ample supply of triadic relations that have been extremely well-studied over the years, and thus they give us no small measure of useful guidance in the study of sign relations, another brand of 3-adic relations that have significance for logical studies, and in our acquaintance with which we have barely begun to break the ice. Finally, I couldn't resist taking up the links between group representations, amounting to the very archetypes of logical models, and the pragmatic maxim. | We made the observation that the shift operators <math>\{ \operatorname{E}_{ij} \}</math> form a transformation group that acts on the set of propositions of the form <math>f : \mathbb{B} \times \mathbb{B} \to \mathbb{B}.</math> Group theory is a very attractive subject, but it did not draw us so far from our intended course as one might initially think. For one thing, groups, especially the groups that are named after the Norwegian mathematician [http://www-history.mcs.st-andrews.ac.uk/Biographies/Lie.html Marius Sophus Lie (1842–1899)], have turned out to be of critical utility in the solution of differential equations. For another thing, group operations provide us with an ample supply of triadic relations that have been extremely well-studied over the years, and thus they give us no small measure of useful guidance in the study of sign relations, another brand of 3-adic relations that have significance for logical studies, and in our acquaintance with which we have barely begun to break the ice. Finally, I couldn't resist taking up the links between group representations, amounting to the very archetypes of logical models, and the pragmatic maxim. | ||
− | |||
− | |||
We've seen a couple of groups, <math>V_4\!</math> and <math>S_3,\!</math> represented in various ways, and we've seen their representations presented in a variety of different manners. Let us look at one other stylistic variant for presenting a representation that is frequently seen, the so-called ''matrix representation'' of a group. | We've seen a couple of groups, <math>V_4\!</math> and <math>S_3,\!</math> represented in various ways, and we've seen their representations presented in a variety of different manners. Let us look at one other stylistic variant for presenting a representation that is frequently seen, the so-called ''matrix representation'' of a group. |
Revision as of 14:32, 23 June 2009
Differential logic is the component of logic whose object is the description of variation — for example, the aspects of change, difference, distribution, and diversity — in universes of discourse that are subject to logical description. In formal logic, differential logic treats the principles that govern the use of a differential logical calculus, that is, a formal system with the expressive capacity to describe change and diversity in logical universes of discourse.
A simple example of a differential logical calculus is furnished by a differential propositional calculus. A differential propositional calculus is a propositional calculus extended by a set of terms for describing aspects of change and difference, for example, processes that take place in a universe of discourse or transformations that map a source universe into a target universe. This augments ordinary propositional calculus in the same way that the differential calculus of Leibniz and Newton augments the analytic geometry of Descartes.
Quick Overview
One of the first things that you can do, once you have a moderately efficient calculus for boolean functions or propositional logic, whatever you choose to call it, is to start thinking about, and even start computing, the differentials of these functions or propositions.
Let us start with a proposition of the form \(p ~\operatorname{and}~ q\) that is graphed as two labels attached to a root node:
Written as a string, this is just the concatenation \(p~q\).
The proposition \(pq\!\) may be taken as a boolean function \(f(p, q)\!\) having the abstract type \(f : \mathbb{B} \times \mathbb{B} \to \mathbb{B},\) where \(\mathbb{B} = \{ 0, 1 \}\) is read in such a way that \(0\!\) means \(\operatorname{false}\) and \(1\!\) means \(\operatorname{true}.\)
In this style of graphical representation, the value \(\operatorname{true}\) looks like a blank label and the value \(\operatorname{false}\) looks like an edge.
Back to the proposition \(pq.\!\) Imagine yourself standing in a fixed cell of the corresponding venn diagram, say, the cell where the proposition \(pq\!\) is true, as shown in the following Figure:
Now ask yourself: What is the value of the proposition \(pq\!\) at a distance of \(\operatorname{d}p\) and \(\operatorname{d}q\) from the cell \(pq\!\) where you are standing?
Don't think about it — just compute:
The cactus formula \(\texttt{(p, dp)(q, dq)}\) and its corresponding graph arise by substituting \(p + \operatorname{d}p\) for \(p\!\) and \(q + \operatorname{d}q\) for \(q\!\) in the boolean product or logical conjunction \(pq\!\) and writing the result in the two dialects of cactus syntax. This follows from the fact that the boolean sum \(p + \operatorname{d}p\) is equivalent to the logical operation of exclusive disjunction, which parses to a cactus graph of the following form:
Next question: What is the difference between the value of the proposition \(pq\!\) over there, at a distance of \(\operatorname{d}p\) and \(\operatorname{d}q,\) and the value of the proposition \(pq\!\) where you are standing, all expressed in the form of a general formula, of course? Here is the appropriate formulation:
There is one thing that I ought to mention at this point: Computed over \(\mathbb{B},\) plus and minus are identical operations. This will make the relation between the differential and the integral parts of the appropriate calculus slightly stranger than usual, but we will get into that later.
Last question, for now: What is the value of this expression from your current standpoint, that is, evaluated at the point where \(pq\!\) is true? Well, substituting \(1\!\) for \(p\!\) and \(1\!\) for \(q\!\) in the graph amounts to erasing the labels \(p\!\) and \(q\!,\) as shown here:
And this is equivalent to the following graph:
We have just met with the fact that the differential of the and is the or of the differentials.
\(\begin{matrix} p ~\operatorname{and}~ q & \quad & \xrightarrow{\quad\operatorname{Diff}\quad} & \quad & \operatorname{d}p ~\operatorname{or}~ \operatorname{d}q \end{matrix}\) |
It will be necessary to develop a more refined analysis of that statement directly, but that is roughly the nub of it.
If the form of the above statement reminds you of De Morgan's rule, it is no accident, as differentiation and negation turn out to be closely related operations. Indeed, one can find discussions of logical difference calculus in the Boole–De Morgan correspondence and Peirce also made use of differential operators in a logical context, but the exploration of these ideas has been hampered by a number of factors, not the least of which has been the lack of a syntax that was adequate to handle the complexity of expressions that evolve.
Let us run through the initial example again, this time attempting to interpret the formulas that develop at each stage along the way.
We begin with a proposition or a boolean function \(f(p, q) = pq.\!\)
A function like this has an abstract type and a concrete type. The abstract type is what we invoke when we write things like \(f : \mathbb{B} \times \mathbb{B} \to \mathbb{B}\) or \(f : \mathbb{B}^2 \to \mathbb{B}.\) The concrete type takes into account the qualitative dimensions or the "units" of the case, which can be explained as follows.
Let \(P\!\) be the set of values \(\{ \texttt{(} p \texttt{)},~ p \} ~=~ \{ \operatorname{not}~ p,~ p \} ~\cong~ \mathbb{B}.\) |
Let \(Q\!\) be the set of values \(\{ \texttt{(} q \texttt{)},~ q \} ~=~ \{ \operatorname{not}~ q,~ q \} ~\cong~ \mathbb{B}.\) |
Then interpret the usual propositions about \(p, q\!\) as functions of the concrete type \(f : P \times Q \to \mathbb{B}.\)
We are going to consider various operators on these functions. Here, an operator \(\operatorname{F}\) is a function that takes one function \(f\!\) into another function \(\operatorname{F}f.\)
The first couple of operators that we need to consider are logical analogues of the pair that play a founding role in the classical finite difference calculus, namely:
The difference operator \(\Delta,\!\) written here as \(\operatorname{D}.\) |
The enlargement" operator \(\Epsilon,\!\) written here as \(\operatorname{E}.\) |
These days, \(\operatorname{E}\) is more often called the shift operator.
In order to describe the universe in which these operators operate, it is necessary to enlarge the original universe of discourse. Starting from the initial space \(X = P \times Q,\) its (first order) differential extension \(\operatorname{E}X\) is constructed according to the following specifications:
\(\begin{array}{rcc} \operatorname{E}X & = & X \times \operatorname{d}X \end{array}\) |
where:
\(\begin{array}{rcc} X & = & P \times Q \'"`UNIQ-MathJax1-QINU`"' Amazing! {| align="center" cellpadding="0" cellspacing="0" width="90%" | <p>Consider what effects that might ''conceivably'' have practical bearings you ''conceive'' the objects of your ''conception'' to have. Then, your ''conception'' of those effects is the whole of your ''conception'' of the object.</p> |- | align="right" | — Charles Sanders Peirce, "Issues of Pragmaticism", (CP 5.438) |} One other subject that it would be opportune to mention at this point, while we have an object example of a mathematical group fresh in mind, is the relationship between the pragmatic maxim and what are commonly known in mathematics as ''representation principles''. As it turns out, with regard to its formal characteristics, the pragmatic maxim unites the aspects of a representation principle with the attributes of what would ordinarily be known as a ''closure principle''. We will consider the form of closure that is invoked by the pragmatic maxim on another occasion, focusing here and now on the topic of group representations. Let us return to the example of the ''four-group'' \(V_4.\!\) We encountered this group in one of its concrete representations, namely, as a transformation group that acts on a set of objects, in this case a set of sixteen functions or propositions. Forgetting about the set of objects that the group transforms among themselves, we may take the abstract view of the group's operational structure, for example, in the form of the group operation table copied here:
This table is abstractly the same as, or isomorphic to, the versions with the \(\operatorname{E}_{ij}\) operators and the \(\operatorname{T}_{ij}\) transformations that we took up earlier. That is to say, the story is the same, only the names have been changed. An abstract group can have a variety of significantly and superficially different representations. But even after we have long forgotten the details of any particular representation there is a type of concrete representations, called regular representations, that are always readily available, as they can be generated from the mere data of the abstract operation table itself. To see how a regular representation is constructed from the abstract operation table, select a group element from the top margin of the Table, and "consider its effects" on each of the group elements as they are listed along the left margin. We may record these effects as Peirce usually did, as a logical aggregate of elementary dyadic relatives, that is, as a logical disjunction or boolean sum whose terms represent the ordered pairs of \(\operatorname{input} : \operatorname{output}\) transactions that are produced by each group element in turn. This forms one of the two possible regular representations of the group, in this case the one that is called the post-regular representation or the right regular representation. It has long been conventional to organize the terms of this logical aggregate in the form of a matrix: Reading "\(+\!\)" as a logical disjunction:
And so, by expanding effects, we get:
|