| Line 3,879: |
Line 3,879: |
| | <math>\begin{array}{rcccccc} | | <math>\begin{array}{rcccccc} |
| | \operatorname{E}(pq) | | \operatorname{E}(pq) |
| − | & = & p & \cdot & q & \cdot & (\operatorname{d}p)(\operatorname{d}q) | + | & = & |
| | + | p |
| | + | & \cdot & |
| | + | q |
| | + | & \cdot & |
| | + | \texttt{(} \operatorname{d}p \texttt{)} |
| | + | \texttt{(} \operatorname{d}q \texttt{)} |
| | \\[4pt] | | \\[4pt] |
| − | & + & p & \cdot & (q) & \cdot & (\operatorname{d}p)~\operatorname{d}q~ | + | & + & |
| | + | p |
| | + | & \cdot & |
| | + | \texttt{(} q \texttt{)} |
| | + | & \cdot & |
| | + | \texttt{(} \operatorname{d}p \texttt{)} |
| | + | \texttt{~} \operatorname{d}q \texttt{~} |
| | \\[4pt] | | \\[4pt] |
| − | & + & (p) & \cdot & q & \cdot & ~\operatorname{d}p~(\operatorname{d}q) | + | & + & |
| | + | \texttt{(} p \texttt{)} |
| | + | & \cdot & |
| | + | q |
| | + | & \cdot & |
| | + | \texttt{~} \operatorname{d}p \texttt{~} |
| | + | \texttt{(} \operatorname{d}q \texttt{)} |
| | \\[4pt] | | \\[4pt] |
| − | & + & (p) & \cdot & (q) & \cdot & ~\operatorname{d}p~~\operatorname{d}q~\end{array}</math> | + | & + & |
| | + | \texttt{(} p \texttt{)} |
| | + | & \cdot & |
| | + | \texttt{(} q \texttt{)} |
| | + | & \cdot & |
| | + | \texttt{~} \operatorname{d}p \texttt{~} |
| | + | \texttt{~} \operatorname{d}q \texttt{~} |
| | + | \end{array}</math> |
| | |} | | |} |
| | | | |
| Line 3,900: |
Line 3,925: |
| | <math>\begin{array}{rcccccc} | | <math>\begin{array}{rcccccc} |
| | \operatorname{D}(pq) | | \operatorname{D}(pq) |
| − | & = & p & \cdot & q & \cdot & ((\operatorname{d}p)(\operatorname{d}q)) | + | & = & |
| | + | p |
| | + | & \cdot & |
| | + | q |
| | + | & \cdot & |
| | + | \texttt{(} |
| | + | \texttt{(} \operatorname{d}p \texttt{)} |
| | + | \texttt{(} \operatorname{d}q \texttt{)} |
| | + | \texttt{)} |
| | \\[4pt] | | \\[4pt] |
| − | & + & p & \cdot & (q) & \cdot & ~(\operatorname{d}p)~\operatorname{d}q~~ | + | & + & |
| | + | p |
| | + | & \cdot & |
| | + | \texttt{(} q \texttt{)} |
| | + | & \cdot & |
| | + | \texttt{~} |
| | + | \texttt{(} \operatorname{d}p \texttt{)} |
| | + | \texttt{~} \operatorname{d}q \texttt{~} |
| | + | \texttt{~} |
| | \\[4pt] | | \\[4pt] |
| − | & + & (p) & \cdot & q & \cdot & ~~\operatorname{d}p~(\operatorname{d}q)~ | + | & + & |
| | + | \texttt{(} p \texttt{)} |
| | + | & \cdot & |
| | + | q |
| | + | & \cdot & |
| | + | \texttt{~} |
| | + | \texttt{~} \operatorname{d}p \texttt{~} |
| | + | \texttt{(} \operatorname{d}q \texttt{)} |
| | + | \texttt{~} |
| | \\[4pt] | | \\[4pt] |
| − | & + & (p) & \cdot & (q) & \cdot & ~~\operatorname{d}p~~\operatorname{d}q~~ | + | & + & |
| | + | \texttt{(} p \texttt{)} |
| | + | & \cdot & |
| | + | \texttt{(}q \texttt{)} |
| | + | & \cdot & |
| | + | \texttt{~} |
| | + | \texttt{~} \operatorname{d}p \texttt{~} |
| | + | \texttt{~} \operatorname{d}q \texttt{~} |
| | + | \texttt{~} |
| | \end{array}</math> | | \end{array}</math> |
| | |} | | |} |