MyWikiBiz, Author Your Legacy — Wednesday November 05, 2025
Jump to navigationJump to search
82 bytes added
, 03:44, 1 May 2009
| Line 239: |
Line 239: |
| | | | |
| | {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |
| − | | <math>(S^L)_{ij} ~=~ \prod_{x \in X} S_{ix}^{L_{xj}}</math> | + | | <math>(\mathfrak{S}^\mathfrak{L})_{ab} ~=~ \prod_{x \in X} \mathfrak{S}_{ax}^{\mathfrak{L}_{xb}}</math> |
| | |} | | |} |
| | | | |
| − | In other words, <math>(S^L)_{ij}\!</math> goes to zero as soon as we find an <math>x \in X</math> such that <math>S_{ix} = 0\!</math> and <math>L_{xj} = 1.\!</math> | + | In other words, <math>(\mathfrak{S}^\mathfrak{L})_{ab} = 0</math> if and only if there exists an <math>x \in X</math> such that <math>\mathfrak{S}_{ax} = 0</math> and <math>\mathfrak{L}_{xb} = 1.</math> |
| | | | |
| | ===Commentary on Selection 12=== | | ===Commentary on Selection 12=== |