| Line 3,959: | Line 3,959: | 
|  | ===Commentary Note 11.9=== |  | ===Commentary Note 11.9=== | 
|  |  |  |  | 
| − | Among the vast variety of conceivable regularities affecting 2-adic relations, we pay special attention to the <math>c\!</math>-regularity conditions where <math>c\!</math> is equal to 1. | + | Among the variety of conceivable regularities affecting 2-adic relations, we pay special attention to the <math>c\!</math>-regularity conditions where <math>c\!</math> is equal to 1. | 
|  |  |  |  | 
|  | Let <math>P \subseteq X \times Y</math> be an arbitrary 2-adic relation.  The following properties of <math>~P~</math> can be defined: |  | Let <math>P \subseteq X \times Y</math> be an arbitrary 2-adic relation.  The following properties of <math>~P~</math> can be defined: | 
| Line 3,984: | Line 3,984: | 
|  | |} |  | |} | 
|  |  |  |  | 
| − | We have already looked at 2-adic relations that separately exemplify each of these regularities. | + | We have already looked at 2-adic relations that separately exemplify each of these regularities.  We also introduced a few bits of additional terminology and special-purpose notations for working with tubular relations: | 
|  |  |  |  | 
| − | Also, we introduced a few bits of additional terminology and special-purpose notations for working with tubular relations:
 | + | {| align="center" cellspacing="6" width="90%" | 
| − |   |  | 
| − | {| align="center" cellspacing="6" width="90%" <!--QUOTE--> |  | 
|  | | |  | | | 
| − | {| cellpadding="4" | + | <math>\begin{array}{lll} | 
| − | | ''P'' is a"pre-function" ''P'' :''X'' ~> ''Y''
 | + | P ~\text{is a pre-function}~ P : X \rightharpoonup Y | 
| − | | iff
 | + | & \iff & | 
| − | | ''P'' is tubular at''X''.
 | + | P ~\text{is tubular at}~ X. | 
| − | |-
 | + | \\[6pt] | 
| − | | ''P'' is a"pre-function" ''P'' :''X'' <~ ''Y''
 | + | P ~\text{is a pre-function}~ P : X \leftharpoonup Y | 
| − | | iff
 | + | & \iff & | 
| − | | ''P'' is tubular at''Y''.
 | + | P ~\text{is tubular at}~ Y. | 
| − | |}
 | + | \end{array}</math> | 
|  | |} |  | |} | 
|  |  |  |  | 
| Line 4,022: | Line 4,020: | 
|  | For example, let ''X'' = ''Y'' = {0, …, 9} and let ''F'' ⊆ ''X'' × ''Y'' be the 2-adic relation that is depicted in the bigraph below: |  | For example, let ''X'' = ''Y'' = {0, …, 9} and let ''F'' ⊆ ''X'' × ''Y'' be the 2-adic relation that is depicted in the bigraph below: | 
|  |  |  |  | 
|  | + | {| align="center" cellspacing="6" width="90%" | 
|  | + | | | 
|  | <pre> |  | <pre> | 
|  | 0   1   2   3   4   5   6   7   8   9 |  | 0   1   2   3   4   5   6   7   8   9 | 
| Line 4,031: | Line 4,031: | 
|  | 0   1   2   3   4   5   6   7   8   9 |  | 0   1   2   3   4   5   6   7   8   9 | 
|  | </pre> |  | </pre> | 
|  | + | |} | 
|  |  |  |  | 
|  | We observe that ''F'' is a function at ''Y'', and we record this fact in either of the manners ''F'' : ''X'' ← ''Y'' or ''F'' : ''Y'' → ''X''. |  | We observe that ''F'' is a function at ''Y'', and we record this fact in either of the manners ''F'' : ''X'' ← ''Y'' or ''F'' : ''Y'' → ''X''. |